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Preface
Introduction to R for Quantitative Finance will show you how to solve real-world 
quantitative finance problems using the statistical computing languages R and 
QF. In this book, we will cover diverse topics ranging from Time Series Analysis 
to Financial Networks. Each chapter will briefly present the theory and deal with 
solving a specific problem using R.

What this book covers
Chapter 1, Time Series Analysis (Michael Puhle), explains working with time series 
data in R. Furthermore, you will learn how to model and forecast house prices, 
improve hedge ratios using cointegration, and model volatility.

Chapter 2, Portfolio Optimization (Péter Csóka, Ferenc Illés, Gergely Daróczi),  
covers the theoretical idea behind portfolio selection and shows how to apply  
this knowledge to real-world data.

Chapter 3, Asset Pricing Models (Kata Váradi, Barbara Mária Dömötör, Gergely 
Daróczi), builds on the previous chapter and presents models for the relationship 
between asset return and risk. We'll cover the Capital Asset Pricing Model and the 
Arbitrage Pricing Theory.

Chapter 4, Fixed Income Securities (Márton Michaletzky, Gergely Daróczi), deals with 
the basics of fixed income instruments. Furthermore, you will learn how to calculate 
the risk of such an instrument and construct portfolios that will be immune to 
changes in interest rates.

Chapter 5, Estimating the Term Structure of Interest Rates (Tamás Makara, Gergely 
Daróczi), introduces the concept of a yield curve and shows how to estimate it using 
prices of government bonds.
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Chapter 6, Derivatives Pricing (Ágnes Vidovics-Dancs, Gergely Daróczi), explains the 
pricing of derivatives using discrete and continuous time models. Furthermore, you 
will learn how to calculate derivatives risk measures and the so-called "Greeks".

Chapter 7, Credit Risk Management (Dániel Havran, Gergely Daróczi), gives an 
introduction to the credit default models and shows how to model correlated 
defaults using copulas.

Chapter 8, Extreme Value Theory (Zsolt Tulassay), presents possible uses of Extreme 
Value Theory in insurance and finance. You will learn how to fit a model to the 
tails of the distribution of fire losses. Then we will use the fitted model to calculate 
Value-at-Risk and Expected Shortfall.

Chapter 9, Financial Networks (Edina Berlinger, Gergely Daróczi), explains how 
financial networks can be represented, simulated, visualized, and analyzed in R. 
We will analyze the interbank lending market and learn how to systemically detect 
important financial institutions.

What you need for this book
All the code examples provided in this book should be run in the R console that is 
to be installed first on a computer. You can download the software for free and find 
the installation instructions for all major operating systems at http://r-project.
org. Although we will not cover advanced topics such as how to use R in Integrated 
Development Environments, there are awesome plugins for Emacs, Eclipse, vi, or 
Notepad++ besides other editors, and we can also highly recommend trying RStudio, 
which is a free and open source IDE dedicated to R.

Apart from a working R installation, we will also use some user-contributed R 
packages that can be easily installed from the Comprehensive R Archive Network. 
To install a package, use the install.packages command in the R console, shown 
as follows:

> install.packages('zoo')

After installation, the package should be also loaded first to the current R session 
before usage:

> library(zoo)

You can find free introductory articles and manuals on the R homepage, but this 
book is targeted towards beginners, so no additional R knowledge is assumed  
from the reader.
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Who this book is for
The book is aimed at readers who wish to use R to solve problems in quantitative 
finance. Some familiarity with finance is assumed, but we generally provide the 
financial theory as well. Familiarity with R is not assumed. Those who want to get 
started with R may find this book useful as we don't give a complete overview of the 
R language but show how to use parts of it to solve specific problems. Even if you 
already use R, you will surely be amazed to see the wide range of problems that it 
can be applied to.

Conventions
In this book, you will find a number of styles of text that distinguish between 
different kinds of information. Here are some examples of these styles, and an 
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions, 
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: 
"we will employ some methods from the forecast package"

A block of R code (usually a function's body) is set as follows:

logreturn <- function(x) {
    log(tail(x, -1) / head(x, -1))
}

When we wish to draw your attention to a particular part of a code block,  
the relevant lines or items are set in bold:

logreturn <- function(x) {
    log(tail(x, -1) / head(x, -1))
}

Any command-line input or output is written as follows:

> pi

[1] 3.141593

Where ">" shows that the R console is waiting for commands to be evaluated. 
Multiline expressions are started with the same symbol on the first line, but all the 
rest lines have a "+" sign at the beginning to show that the last R expression is still  
to be finished.
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New terms and important words are shown in bold. Words that you see on the 
screen, in menus or dialog boxes for example, appear in the text like this: "clicking 
the Next button moves you to the next screen".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about 
this book—what you liked or may have disliked. Reader feedback is important for  
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, 
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing 
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things  
to help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to
have the files e-mailed directly to you.
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Errata
Although we have taken every care to ensure the accuracy of our content,  
mistakes do happen. If you find a mistake in one of our books—maybe a mistake  
in the text or the code—we would be grateful if you would report this to us. 
By doing so, you can save other readers from frustration and help us improve 
subsequent versions of this book. If you find any errata, please report them by 
visiting http://www.packtpub.com/submit-errata, selecting your book, clicking 
on the errata submission form link, and entering the details of your errata. Once 
your errata are verified, your submission will be accepted and the errata will be 
uploaded on our website, or added to any list of existing errata, under the Errata 
section of that title. Any existing errata can be viewed by selecting your title from 
http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. 
At Packt, we take the protection of our copyright and licenses very seriously. If you 
come across any illegal copies of our works, in any form, on the Internet, please 
provide us with the location address or website name immediately so that we can 
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected  
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you 
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem  
with any aspect of the book, and we will do our best to address it.
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Time Series Analysis
Time series analysis is concerned with the analysis of data collected over time. 
Adjacent observations are typically dependent. Time series analysis hence deals with 
techniques for the analysis of this dependence.

The objective of this chapter is to introduce some common modeling techniques by 
means of specific applications. We will see how to use R to solve these real-world 
examples. We begin with some thoughts about how to store and process time series 
data in R. Afterwards, we deal with linear time series analysis and how it can be 
used to model and forecast house prices. In the subsequent section, we use the notion 
of cointegration to improve on the basic minimal variance hedge ratio by taking 
long-run trends into consideration. The chapter concludes with a section on how  
to use volatility models for risk management purposes.

Working with time series data
The native R classes suitable for storing time series data include vector, matrix, 
data.frame, and ts objects. But the types of data that can be stored in these objects 
are narrow; furthermore, the methods provided by these representations are 
limited in scope. Luckily, there exist specialized objects that deal with more general 
representation of time series data: zoo, xts, or timeSeries objects, available from 
packages of the same name.

It is not necessary to create time series objects for every time series analysis problem, 
but more sophisticated analyses require time series objects. You could calculate the 
mean or variance of time series data represented as a vector in R, but if you want 
to perform a seasonal decomposition using decompose, you need to have the data 
stored in a time series object.
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In the following examples, we assume you are working with zoo objects because we 
think it is one of the most widely used packages. Before we can use zoo objects, we 
need to install and load the zoo package (if you have already installed it, you only 
need to load it) using the following command:

> install.packages("zoo")

> library("zoo")

In order to familiarize ourselves with the available methods, we create a zoo object 
called aapl from the daily closing prices of Apple's stock, which are stored in 
the CSV file aapl.csv. Each line on the sheet contains a date and a closing price 
separated by a comma. The first line contains the column headings (Date and Close). 
The date is formatted according to the recommended primary standard notation of 
ISO 8601 (YYYY-MM-DD). The closing price is adjusted for stock splits, dividends, 
and related changes.

Downloading the example code

You can download the example code files for all Packt books you have 
purchased from your account at http://www.packtpub.com. If you 
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

We load the data from our current working directory using the following command:

> aapl<-read.zoo("aapl.csv", 
+   sep=",", header = TRUE, format = "%Y-%m-%d")

To get a first impression of the data, we plot the stock price chart and specify a title 
for the overall plot (using the main argument) and labels for the x and y axis (using 
xlab and ylab respectively).

> plot(aapl, main = "APPLE Closing Prices on NASDAQ", 
+   ylab = "Price (USD)", xlab = "Date")

We can extract the first or last part of the time series using the following commands:

> head(aapl)

2000-01-03 2000-01-04 2000-01-05 2000-01-06 2000-01-07 2000-01-10

     27.58      25.25      25.62      23.40      24.51      24.08

> tail(aapl)

2013-04-17 2013-04-18 2013-04-19 2013-04-22 2013-04-23 2013-04-24

    402.80     392.05     390.53     398.67     406.13     405.46
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Apple's all-time high and the day on which it occurred can be found using the 
following command:

> aapl[which.max(aapl)]

2012-09-19

    694.86

When dealing with time series, one is normally more interested in returns instead 
of prices. This is because returns are usually stationary. So we will calculate simple 
returns or continuously compounded returns (in percentage terms).

> ret_simple <- diff(aapl) / lag(aapl, k = -1) * 100

> ret_cont   <- diff(log(aapl)) * 100

Summary statistics about simple returns can also be obtained. We use the coredata 
method here to indicate that we are only interested in the stock prices and not the 
index (dates).

> summary(coredata(ret_simple))

     Min.   1st Qu.    Median      Mean   3rd Qu.      Max.

-51.86000  -1.32500   0.07901   0.12530   1.55300  13.91000

The biggest single-day loss is -51.86%. The date on which that loss occurred can be 
obtained using the following command:

> ret_simple[which.min(ret_simple)]

2000-09-29

 -51.85888

A quick search on the Internet reveals that the large movement occurred due to the 
issuance of a profit warning. To get a better understanding of the relative frequency 
of daily returns, we can plot the histogram. The number of cells used to group the 
return data can be specified using the break argument.

> hist(ret_simple, breaks=100, main = "Histogram of Simple Returns", 
+  xlab="%")

We can restrict our analysis to a subset (a window) of the time series. The highest 
stock price of Apple in 2013 can be found using the following command lines:

> aapl_2013 <- window(aapl, start = '2013-01-01', end = '2013-12-31')

> aapl_2013[which.max(aapl_2013)]

2013-01-02 

    545.85
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The quantiles of the return distribution are of interest from a risk-management 
perspective. We can, for example, easily determine the 1 day 99% Value-at-Risk using a 
naive historical approach.

> quantile(ret_simple, probs = 0.01)

       1%        

-7.042678

Hence, the probability that the return is below 7% on any given day is only 1%. But  
if this day occurs (and it will occur approximately 2.5 times per year), 7% is the 
minimum amount you will lose.

Linear time series modeling and 
forecasting
An important class of linear time series models is the family of Autoregressive 
Integrated Moving Average (ARIMA) models, proposed by Box and Jenkins (1976).  
It assumes that the current value can depend only on the past values of the time 
series itself or on past values of some error term.

According to Box and Jenkins, building an ARIMA model consists of three stages:

1.	 Model identification.
2.	 Model estimation.
3.	 Model diagnostic checking.

The model identification step involves determining the order (number of past values 
and number of past error terms to incorporate) of a tentative model using either 
graphical methods or information criteria. After determining the order of the model, 
the parameters of the model need to be estimated, generally using either the least 
squares or maximum likelihood methods. The fitted model must then be carefully 
examined to check for possible model inadequacies. This is done by making sure  
the model residuals behave as white noise; that is, there is no linear dependence left 
in the residuals.
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Modeling and forecasting UK house prices
In addition to the zoo package, we will employ some methods from the forecast 
package. If you haven't installed it already, you need to use the following command 
to do so:

> install.packages("forecast")

Afterwards, we need to load the class using the following command:

> library("forecast")

First, we store the monthly house price data (source: Nationwide Building Society)  
in a zoo time series object.

> hp <- read.zoo("UKHP.csv", sep = ",", 
+   header = TRUE, format = "%Y-%m", FUN = as.yearmon)

The FUN argument applies the given function (as.yearmon, which represents the 
monthly data points) to the date column. To make sure we really stored monthly 
data (12 subperiods per period), by specifying as.yearmon, we query for the 
frequency of the data series.

> frequency(hp)

[1] 12

The result means that we have twelve subperiods (called months) in a period  
(called year). We again use simple returns for our analysis.

> hp_ret <- diff(hp) / lag(hp, k = -1) * 100

Model identification and estimation
We use the auto.arima function provided by the forecast package to identify the 
optimal model and estimate the coefficients in one step. The function takes several 
arguments besides the return series (hp_ret). By specifying stationary = TRUE, 
we restrict the search to stationary models. In a similar vein, seasonal = FALSE 
restricts the search to non-seasonal models. Furthermore, we select the Akaike 
information criteria as the measure of relative quality to be used in model selection.

> mod <- auto.arima(hp_ret, stationary = TRUE, seasonal = FALSE, 
+   ic="aic")
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To determine the fitted coefficient values, we query the model output.

> mod
Series: hp_ret
ARIMA(2,0,0) with non-zero mean 

Coefficients:
         ar1     ar2  intercept
      0.2299  0.3491     0.4345
s.e.  0.0573  0.0575     0.1519

sigma^2 estimated as 1.105:  log likelihood=-390.97
AIC=789.94   AICc=790.1   BIC=804.28

An AR(2) process seems to fit the data best, according to Akaike's Information 
Criteria. For visual confirmation, we can plot the partial autocorrelation function 
using the command pacf. It shows non-zero partial autocorrelations until lag two, 
hence an AR process of order two seems to be appropriate. The two AR coefficients, 
the intercept (which is actually the mean if the model contains an AR term), and the 
respective standard errors are given. In the following example, they are all significant 
at the 5% level since the respective confidence intervals do not contain zero:

> confint(mod)

              2.5 %    97.5 %

ar1       0.1174881 0.3422486

ar2       0.2364347 0.4617421

intercept 0.1368785 0.7321623

If the model contains coefficients that are insignificant, we can estimate the model 
anew using the arima function with the fixed argument, which  takes as input  
a vector of elements 0 and NA. NA indicates that the respective coefficient shall  
be estimated and 0 indicates that the respective coefficient should be set to zero.

Model diagnostic checking
A quick way to validate the model is to plot time-series diagnostics using the 
following command:

> tsdiag(mod)
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The output of the preceding command is shown in the following figure:

Our model looks good since the standardized residuals don't show volatility clusters, 
no significant autocorrelations between the residuals according to the ACF plot, and 
the Ljung-Box test for autocorrelation shows high p-values, so the null hypothesis  
of independent residuals cannot be rejected.

To assess how well the model represents the data in the sample, we can plot the 
raw monthly returns (the thin black solid line) versus the fitted values (the thick red 
dotted line).

> plot(mod$x, lty = 1, main = "UK house prices: raw data vs. fitted 
+   values", ylab = "Return in percent", xlab = "Date")

> lines(fitted(mod), lty = 2,lwd = 2, col = "red")
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The output is shown in the following figure:

Furthermore, we can calculate common measures of accuracy.

> accuracy(mod)
ME      RMSE      MAE          MPE   MAPE    MASE
0.00120 1.0514    0.8059       -Inf  Inf     0.792980241

This command returns the mean error, root mean squared error, mean absolute 
error, mean percentage error, mean absolute percentage error, and mean absolute 
scaled error.

Forecasting
To predict the monthly returns for the next three months (April to June 2013), use  
the following command:

> predict(mod, n.ahead=3)
$pred
           Apr       May       Jun
2013 0.5490544 0.7367277 0.5439708

$se
          Apr      May      Jun
2013 1.051422 1.078842 1.158658

So we expect a slight increase in the average home prices over the next three months, 
but with a high standard error of around 1%. To plot the forecast with standard 
errors, we can use the following command:
> plot(forecast(mod))
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Cointegration
The idea behind cointegration, a concept introduced by Granger (1981) and formalized 
by Engle and Granger (1987), is to find a linear combination between non-stationary 
time series that result in a stationary time series. It is hence possible to detect stable 
long-run relationships between non-stationary time series (for example, prices).

Cross hedging jet fuel
Airlines are natural buyers of jet fuel. Since the price of jet fuel can be very volatile, 
most airlines hedge at least part of their exposure to jet fuel price changes. In the 
absence of liquid jet fuel OTC instruments, airlines use related exchange traded 
futures contracts (for example, heating oil) for hedging purposes. In the following 
section, we derive the optimal hedge ratio using first the classical approach of taking 
into account only the short-term fluctuations between the two prices; afterwards, 
we improve on the classical hedge ratio by taking into account the long-run stable 
relationship between the prices as well.

We first load the necessary libraries. The urca library has some useful methods for 
unit root tests and for estimating cointegration relationships.

> library("zoo")
> install.packages("urca")
> library("urca")

We import the monthly price data for jet fuel and heating oil (in USD per gallon).

> prices <- read.zoo("JetFuelHedging.csv", sep = ",", 
+   FUN = as.yearmon, format = "%Y-%m", header = TRUE)

Taking into account only the short-term behavior (monthly price changes) of the two 
commodities, one can derive the minimum variance hedge by fitting a linear model 
that explains changes in jet fuel prices by changes in heating oil prices. The beta 
coefficient of that regression is the optimal hedge ratio.

> simple_mod <- lm(diff(prices$JetFuel) ~ diff(prices$HeatingOil)+0)

The function lm (for linear model) estimates the coefficients for a best fit of changes 
in jet fuel prices versus changes in heating oil prices. The +0 term means that we set 
the intercept to zero; that is, no cash holdings.

> summary(simple_mod)

Call:

lm(formula = diff(prices$JetFuel) ~ diff(prices$HeatingOil) +

    0)
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Residuals:
     Min       1Q   Median       3Q      Max
-0.52503 -0.02968  0.00131  0.03237  0.39602

Coefficients:
                        Estimate Std. Error t value Pr(>|t|)    
diff(prices$HeatingOil)  0.89059    0.03983   22.36   <2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.0846 on 189 degrees of freedom
Multiple R-squared:  0.7257,   Adjusted R-squared:  0.7242
F-statistic: 499.9 on 1 and 189 DF,  p-value: < 2.2e-16

We obtain a hedge ratio of 0.89059 and a residual standard error of 0.0846. The cross 
hedge is not perfect; the resulting hedged portfolio is still risky.

We now try to improve on this hedge ratio by using an existing long-run relationship 
between the levels of jet fuel and heating oil futures prices. You can already guess 
the existence of such a relationship by plotting the two price series (heating oil prices 
will be in red) using the following command:

> plot(prices$JetFuel, main = "Jet Fuel and Heating Oil Prices", 
+   xlab = "Date", ylab = "USD")

> lines(prices$HeatingOil, col = "red")

We use Engle and Granger's two-step estimation technique. Firstly, both time series 
are tested for a unit root (non-stationarity) using the augmented Dickey-Fuller test.

> jf_adf <- ur.df(prices$JetFuel, type = "drift")
> summary(jf_adf)
###############################################
# Augmented Dickey-Fuller Test Unit Root Test #
###############################################

Test regression drift

Call:
lm(formula = z.diff ~ z.lag.1 + 1 + z.diff.lag)

Residuals:
     Min       1Q   Median       3Q      Max 
-1.06212 -0.05015  0.00566  0.07922  0.38086 

Coefficients:
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            Estimate Std. Error t value Pr(>|t|)   
(Intercept)  0.03050    0.02177   1.401  0.16283   
z.lag.1     -0.01441    0.01271  -1.134  0.25845   
z.diff.lag   0.19471    0.07250   2.686  0.00789 **
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.159 on 186 degrees of freedom
Multiple R-squared:  0.04099,   Adjusted R-squared:  0.03067
F-statistic: 3.975 on 2 and 186 DF,  p-value: 0.0204

Value of test-statistic is: -1.1335 0.9865

Critical values for test statistics:
      1pct  5pct 10pct
tau2 -3.46 -2.88 -2.57

phi1  6.52  4.63  3.81

The null hypothesis of non-stationarity (jet fuel time series contains a unit root) 
cannot be rejected at the 1% significance level since the test statistic of -1.1335 is not 
more negative than the critical value of -3.46. The same holds true  
for heating oil prices (the test statistic is -1.041).

> ho_adf <- ur.df(prices$HeatingOil, type = "drift")

> summary(ho_adf)

We can now proceed to estimate the static equilibrium model and test the residuals 
for a stationary time series using an augmented Dickey-Fuller test. Please note that 
different critical values [for example, from Engle and Yoo (1987)] must now be used 
since the series under investigation is an estimated one.

> mod_static <- summary(lm(prices$JetFuel ~ prices$HeatingOil))

> error <- residuals(mod_static)

> error_cadf <- ur.df(error, type = "none")

> summary(error_cadf)
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The test statistic obtained is -8.912 and the critical value for a sample size of 200  
at the 1% level is -4.00; hence we reject the null hypothesis of non-stationarity. We 
have thus discovered two cointegrated variables and can proceed with the second 
step; that is, the specification of an Error-Correction Model (ECM). The ECM 
represents a dynamic model of how (and how fast) the system moves back to the 
static equilibrium estimated earlier and is stored in the mod_static variable.

> djf <- diff(prices$JetFuel)
> dho <- diff(prices$HeatingOil)
> error_lag <- lag(error, k = -1)
> mod_ecm <- lm(djf ~ dho + error_lag)
> summary(mod_ecm)

Call:
lm(formula = djf ~ dho + error_lag + 0)

Residuals:
     Min       1Q   Median       3Q      Max 
-0.19158 -0.03246  0.00047  0.02288  0.45117 

Coefficients:
          Estimate Std. Error t value Pr(>|t|)    
dho        0.90020    0.03238  27.798   <2e-16 ***
error_lag -0.65540    0.06614  -9.909   <2e-16 ***

---

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.06875 on 188 degrees of freedom

Multiple R-squared:  0.8198,   Adjusted R-squared:  0.8179 

F-statistic: 427.6 on 2 and 188 DF,  p-value: < 2.2e-16

By taking into account the existence of a long-run relationship between jet fuel  
and heating oil prices (cointegration), the hedge ratio is now slightly higher (0.90020)  
and the residual standard error significantly lower (0.06875). The coefficient of the 
error term is negative (-0.65540): large deviations between the two prices are going  
to be corrected and prices move closer to their long-run stable relationship.
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Modeling volatility
As we saw earlier, ARIMA models are used to model the conditional expectation  
of a process, given its past. For such a process, the conditional variance is constant.  
Real-world financial time series exhibit, among other characteristics, volatility 
clustering; that is, periods of relative calm are interrupted by bursts of volatility.

In this section we look at GARCH time series models that can take this stylized  
fact of real-world (financial) time series into account and apply these models  
to VaR forecasting.

Volatility forecasting for risk management
Financial institutions measure the risk of their activities using a Value-at-Risk (VaR), 
usually calculated at the 99% confidence level over a 10 business day horizon. This is 
the loss that is expected to be exceeded only 1% of the time.

We load the zoo library and import monthly return data for Intel Corporation from 
January 1973 to December 2008.

> library("zoo")

> intc <- read.zoo("intc.csv", header = TRUE, 
+   sep = ",", format = "%Y-%m", FUN = as.yearmon)

Testing for ARCH effects
A plot of the returns indicates that ARCH effects might exist in the monthly  
return data.

> plot(intc, main = "Monthly returns of Intel Corporation", 
+   xlab = "Date", ylab = "Return in percent")
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The output of the preceding commands is as shown in the following figure:

We can use statistical hypothesis tests to verify our inkling. Two commonly used 
tests are as follows:

•	 The Ljung-Box test for autocorrelation in squared returns (as a proxy  
for volatility)

•	 The Lagrange Multiplier (LM) test by Engle (1982)

First, we perform the Ljung-Box test on the first 12 lags of the squared returns using 
the following command:

> Box.test(coredata(intc^2), type = "Ljung-Box", lag = 12)

   Box-Ljung test

data:  coredata(intc^2)
X-squared = 79.3451, df = 12, p-value = 5.502e-12

We can reject the null hypothesis of no autocorrelations in the squared returns at the 
1% significance level. Alternatively, we could employ the LM test from the FinTS 
package, which gives the same result.

> install.packages("FinTS")
> library("FinTS")
> ArchTest(coredata(intc))

   ARCH LM-test; Null hypothesis: no ARCH effects

data:  coredata(intc)
Chi-squared = 59.3647, df = 12, p-value = 2.946e-08
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Both tests confirm that ARCH effects exist in the monthly Intel returns; hence,  
an ARCH or GARCH model should be employed in modeling the return time series.

GARCH model specification
The most commonly used GARCH model, and one that is usually appropriate for 
financial time series as well, is a GARCH(1,1) model. We use the functions provided 
by the rugarch library for model specification, parameter estimation, backtesting, 
and forecasting. If you haven't installed the package, use the following command:

> install.packages("rugarch")

Afterwards, we can load the library using the following command:

> library("rugarch")

First, we need to specify the model using the function ugarchspec. For a 
GARCH(1,1) model, we need to set the garchOrder to c(1,1) and the model for the 
mean (mean.model) should be a white noise process and hence equal to armaOrder 
= c(0,0).

> intc_garch11_spec <- ugarchspec(variance.model = list( 
+   garchOrder = c(1, 1)), 
+  mean.model = list(armaOrder = c(0, 0)))

GARCH model estimation
The actual fitting of the coefficients by the method of maximum likelihood is done by 
the function ugarchfit using the model specification and the return data as inputs.

> intc_garch11_fit <- ugarchfit(spec = intc_garch11_spec, 
+  data = intc)

For additional arguments, see the Help on ugarchfit. The output of the fitted model 
(use the command intc_garch11_fit) reveals useful information, such as the 
values of the optimal parameters, the value of the log-likelihood function, and the 
information criteria.

Backtesting the risk model
A useful test for checking the model performance is to do a historical backtest.  
In a risk model backtest, we compare the estimated VaR with the actual return over 
the period. If the return is more negative than the VaR, we have a VaR exceedance. In 
our case, a VaR exceedance should only occur in 1% of the cases (since we specified a 
99% confidence level).
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The function ugarchroll performs a historical backtest on the specified GARCH 
model (here the model is intc_garch11_spec). We specify the backtest as follows:

•	 The return data to be used is stored in the zoo object intc
•	 The start period of the backtest (n.start) shall be 120 months after the 

beginning of the series (that is, January 1983)
•	 The model should be reestimated every month (refit.every = 1)
•	 We use a moving window for the estimation
•	 We use a hybrid solver
•	 We'd like to calculate the VaR (calculate.VaR = TRUE) at the 99% VaR tail 

level (VaR.alpha = 0.01)
•	 We would like to keep the estimated coefficients (keep.coef = TRUE)

The following command shows all the preceding points for a backtest:

> intc_garch11_roll <- ugarchroll(intc_garch11_spec, intc, 
+   n.start = 120, refit.every = 1, refit.window = "moving", 
+   solver = "hybrid", calculate.VaR = TRUE, VaR.alpha = 0.01, 
+   keep.coef = TRUE)

We can examine the backtesting report using the report function. By specifying 
the type argument as VaR, the function executes the unconditional and conditional 
coverage tests for exceedances. VaR.alpha is the tail probability and conf.level is 
the confidence level on which the conditional coverage hypothesis test will be based.

> report(intc_garch11_roll, type = "VaR", VaR.alpha = 0.01, 
+   conf.level = 0.99)
VaR Backtest Report
===========================================
Model:            sGARCH-norm
Backtest Length:   312
Data:            

==========================================
alpha:            1%
Expected Exceed:   3.1
Actual VaR Exceed:	 5
Actual %:         1.6%

Unconditional Coverage (Kupiec)
Null-Hypothesis:   Correct Exceedances
LR.uc Statistic:   0.968
LR.uc Critical:      6.635
LR.uc p-value:      0.325
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Reject Null:      NO

Conditional Coverage (Christoffersen)
Null-Hypothesis:   Correct Exceedances and
               Independence of Failures
LR.cc Statistic:   1.131
LR.cc Critical:      9.21
LR.cc p-value:      0.568
Reject Null:      O

Kupiec's unconditional coverage compares the number of expected versus actual 
exceedances given the tail probability of VaR, while the Christoffersen test is a joint 
test of the unconditional coverage and the independence of the exceedances. In our 
case, despite the actual five exceedances versus an expectation of three, we can't 
reject the null hypothesis that the exceedances are correct and independent.

A plot of the backtesting performance can also be generated easily. First, create a zoo 
object using the extracted forecasted VaR from the ugarchroll object.

> intc_VaR <- zoo(intc_garch11_roll@forecast$VaR[, 1])

We overwrite the index property of the zoo object with rownames (year and month) 
from this object as well.

> index(intc_VaR) <- as.yearmon(rownames(intc_garch11_roll@forecast$VaR))

We do the same for the actual returns that are also stored in the ugarchroll object.

> intc_actual <- zoo(intc_garch11_roll@forecast$VaR[, 2])

> index(intc_actual) <-  
as.yearmon(rownames(intc_garch11_roll@forecast$VaR))

Now, we are able to plot the VaR versus the actual returns of Intel using the 
following commands:

> plot(intc_actual, type = "b", main = "99% 1 Month VaR Backtesting", 
+   xlab = "Date", ylab = "Return/VaR in percent")

> lines(intc_VaR, col = "red")

> legend("topright", inset=.05, c("Intel return","VaR"), col = 
c("black","red"), lty = c(1,1))
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The following figure shows the output of the preceding command lines:

Forecasting
Now that we can be reasonably sure that our risk model works properly, we can 
produce VaR forecasts as well. The function ugarchforecast takes as arguments  
the fitted GARCH model (intc_garch11_fit) and the number of periods for  
which a forecast should be produced (n.ahead = 12; that is, twelve months).

> intc_garch11_fcst <- ugarchforecast(intc_garch11_fit, n.ahead = 12)

The resulting forecast can be expected by querying the forecast object as shown  
in the following command lines:

> intc_garch11_fcst
*------------------------------------*
*       GARCH Model Forecast         *
*------------------------------------*
Model: sGARCH
Horizon: 12
Roll Steps: 0
Out of Sample: 0

0-roll forecast [T0=Dec 2008]:
      Series  Sigma
T+1  0.01911 0.1168
T+2  0.01911 0.1172
T+3  0.01911 0.1177
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T+4  0.01911 0.1181
T+5  0.01911 0.1184
T+6  0.01911 0.1188
T+7  0.01911 0.1191
T+8  0.01911 0.1194
T+9  0.01911 0.1197
T+10 0.01911 0.1200
T+11 0.01911 0.1202
T+12 0.01911 0.1204

The one-period ahead forecast for the volatility (sigma) is 0.1168. Since we assume a 
normal distribution, the 99% VaR can be calculated using the 99% quantile (type in 
qnorm(0.99)) of the standard normal distribution. The one-month 99% VaR estimate 
for the next period is hence qnorm(0.99)*0.1168 = 0.2717. Hence, with 99% 
probability the monthly return is above -27%.

Summary
In this chapter, we have applied R to selected problems in time series analysis. We 
covered the different ways of representing time series data, used an ARMA model 
to forecast house prices, improved our basic minimum variance hedge ratio using 
a cointegration relationship, and employed a GARCH model for risk management 
purposes. In the next chapter, you'll learn how you can use R for constructing an 
optimal portfolio.
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Portfolio Optimization
By now we are familiar with the basics of the R language. We know how to analyze 
data, call its built-in functions, and apply them to the selected problems in a time 
series analysis. In this chapter we will use and extend this knowledge to discuss 
an important practical application: portfolio optimization, or in other words, 
security selection. This section covers the idea behind portfolio optimization: the 
mathematical models and theoretical solutions. To improve programming skills, 
we will implement an algorithm line by line using real data to solve a real-world 
example. We will also use the pre-written R packages on the same data set.

Imagine that we live in a tropical island and have only USD 100 to invest. Investment 
possibilities on the island are very limited; we can invest our entire fund into either 
ice creams or umbrellas. The payoffs that depend on the weather are as follows:

weather ice cream umbrella

sunny 120 90

rainy 90 120

Suppose the probability of the weather being rainy or sunny is the same. If we 
cannot foresee or change the weather, the two options are clearly equivalent and  
we have an expected return of 5% [(0.5×120+0.5×90)/100-1=0.05] by investing in  
any of them.

What if we can split our funds between ice creams and umbrellas? Then we should 
invest USD 50 in both the options. This portfolio is riskless because whatever 
happens, we earn USD 45 with one asset and USD 60 with the other one. The 
expected return is still 5%, but now it is guaranteed since (45+60)/100-1=0.05.
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The main concept of portfolio optimization (which won the Nobel Prize for Harry 
Markowitz in 1990) is captured in this example. Based on the correlation between 
investment products, we can reduce the risk (which in this case is measured by 
variance) of the portfolio and still get the desired expected return.

To be mathematically more precise, let X and Y be the random variables with the 
finite variances 

2
xσ  and 

2
yσ . The variance of their convex or affine combination is 

shown in the following quadratic function:

( ) ( )( ) ( ) ( ) ( )22 2 2Var 1 1 2 1 ,x yf X Y Cov X Yα α α α σ α σ α α= + − = + − + −

For different values of their correlation, this quadratic function looks like the 
following diagram:

The variance (as a measure of risk) can completely be eliminated if and only if the 
correlation between X and Y is -1 or +1, and the variance of X and Y are not the 
same. Otherwise, the variance of the portfolio with optimal weights depends (in an 
absolutely non-trivial way) on all the three parameters ( 2

xσ , 2
yσ , and ( ),Cov X Y ), as we 

will see later in the Theorem (Lagrange) section.
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Mean-Variance model
The Mean-Variance model by Markowitz (Markowitz, H.M. (March 1952)) is 
practically the ice-cream/umbrella business in higher dimensions. For the 
mathematical formulation, we need some definitions.

They are explained as follows:

•	 By asset iX , we mean a random variable with finite variance.
•	 By portfolio, we mean the combination of assets: i iP w X=∑ , where 

1 1iw w= =∑
�

, and ( )1 1,1...1=
�

. The combination can be affine or convex. In the 
affine case, there is no extra restriction on the weights. In the convex case, all 
the weights are non-negative.

•	 By optimization, we mean a process of choosing the best iw  coefficients 
(weights) so that our portfolio meets our needs (that is, it has a minimal risk 
on the given expected return or has the highest expected return on a given 
level of risk, and so on).

Let 1 2, ,... nX X X  be the random return variables with a finite variance, n nQ ×∈   
be their covariance matrix, ( )1 2, ,... nr EX EX EX=  and i iwr w r=∑ .

We will focus on the following optimization problems:

•	 { } ( )min | , 1 1 1T nw Qw w w∈ =
�



•	 { } ( )2max | , , 1 1 2n Twr w w Qw wσ∈ = =
�



•	 { } ( )min | , 1 1, 3T nw Qw w w wr µ∈ = =
�



•	 { } ( )max | , 1 1 4T nwr w Qw w wλ− ∈ =
�



•	 ( )2min{ ( ) | , 1 1} 5T nw X Y w wσ − ∈ =
�



It is clear that Tw Qw  is the variance of the portfolio and wr  is the expected return. 
For the sum of the weights we have 1 1,w =

�
 which means that we would like to invest 

1 unit of cash. (We can also consider adding the 0w >  condition, which means  
that short selling is not allowed.) The problems are explained in detail in  
the following points:

•	 The first problem is to find the portfolio with a minimal risk. It can  
be nontrivial if there is no riskless asset.

•	 The second one is to maximize the expected return on a given level  
of variance.
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•	 A slightly different approach is to find a portfolio with minimal variance  
on a desired level of expected return.

•	 The fourth problem is to maximize a simple utility function return *risk,λ−
where λ is the coefficient of risk tolerance; it's an arbitrary number that 
expresses our attitude to a risk. It is practically the same as the first problem.

•	 In the fifth problem, Y is an n+1th asset (for example, an index), which we 
cannot purchase or don't want to purchase, but want to replicate it. Other 
similar problems can be formulated in the same way.
It is clear that the second problem is a linear optimization with a quadratic 
constraint; all the others are quadratic functions with linear constraints. As we 
will see later, this is an important difference because linear constraints can be 
handled easily while quadratic constraints are more difficult to handle. In the 
next two sections, we will focus on the complexity and possible solutions of 
these problems.

Solution concepts
In the last 50 years, many great algorithms have been developed for numerical 
optimization and these algorithms work well, especially in case of quadratic 
functions. As we have seen in the previous section, we only have quadratic functions 
and constraints; so these methods (that are implemented in R as well) can be used in 
the worst case scenarios (if there is nothing better).

However, a detailed discussion of numerical optimization is out of the scope of 
this book. Fortunately, in the special case of linear and quadratic functions and 
constraints, these methods are unnecessary; we can use the Lagrange theorem from 
the 18th century.

Theorem (Lagrange)
If � �  and 1 2( , ,... ) : n m

mg g g g= →  , (where m n< ) have continuous partial 
derivatives and { ( ) 0}a g x∈ =  is a relative extreme point of f(x) subject to the ( ) 0,g x =  
constraint where ( ( ))rank g a m′ = .

Then, there exist the coefficients 1 2, ,... mλ λ λ  such that ( ) ( ) 0.i if a g aλ′ ′+ =∑

In other words, all of the partial derivatives of the function -  
are 0 (Bertsekas Dimitri P. (1999)).

In our case, the condition is also sufficient. The partial derivative of a quadratic 
function is linear, so the optimization leads to the problem of solving a linear system 
of equations, which is a high school task (unlike numerical methods).
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Let's see, how this can be used to solve the third problem:

min{ | , 1 1, }T nw Qw w w wr µ∈ = =
�



It can be shown that this problem is equivalent to the following system of  
linear equations:

1

2

1 0
1 0 0 1
0 0

Q r w

r
λ
λ µ

          =               

� �
�

�

(Two rows and two columns are added to the covariance matrix, so we have 
conditions to determine the two Lagrange multipliers as well.) We can expect  
a unique solution for this system.

It is worth emphasizing that what we get with the Lagrange theorem is not an 
optimization problem anymore. Just as in one dimension, minimizing a quadratic 
function leads to taking a derivative and a linear system of equations, which  
is trivial from the point of complexity. Now let's see what to do with the return 
maximization problem:

max{ | , , 1 1}n Twr w w Qw wσ∈ = =
�



It's easy to see that the derivative of the Lagrange function subject to λ is the 
constraint itself.

To see this, take the derivative of L:

•	 : i iL f gλ= +∑
•	 / i iL gλ∂ ∂ =

So this leads to non-linear equations, which is more of an art than a science.
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Working with real data
It is useful to know that portfolio optimization is totally integrated in various R 
packages that we will discuss later. However, it's better to walk before we run; so 
let's start with a simple self-made R function that we would also itemize line by line 
as follows:

minvariance <- function(assets, mu = 0.005) {
    return  <- log(tail(assets, -1) / head(assets, -1))
    Q       <- rbind(cov(return), rep(1, ncol(assets)),
               colMeans(return))
    Q       <- cbind(Q, rbind(t(tail(Q, 2)), matrix(0, 2, 2)))
    b       <- c(rep(0, ncol(assets)), 1, mu)
    solve(Q, b)
}

This is a direct implementation of the algorithm that we discussed in the Theorem 
(Lagrange) section.

For demonstration purposes, we have fetched some IT stock prices from a Quandl 
superset (http://www.quandl.com/USER_1KR/1KT), which is a public service 
providing an easy access to a large amount of quant data. Although the URL points 
to a downloadable comma-separated values (CSV) file (http://www.quandl.com/
api/v1/datasets/USER_1KR/1KT.csv) that can be saved to a disk and imported 
to R with read.csv, there is a more intuitive way to do so with the help of the keys 
included in the previous URLs:

> library(Quandl)
> IT <- Quandl('USER_1KR/1KT',
+           start_date = '2008-01-01', end_date = '2012-12-31')
Warning message:
In Quandl("USER_1KR/1KT", start_date = "2008-01-01", end_date = "2012-12-
31"):

The preceding warning message would appear if you are not using an authentication 
token. Please visit http://www.quandl.com/help/r or you may download only 10 
datasets a day from Quandl.

> str(IT)

'data.frame':  1259 obs. of  6 variables:

 $ Date: Date, format: "2008-01-02" "2008-01-03" ...

 $ AAPL: num  199 195 191 181 180 ...

 $ GOOG: num  693 685 680 654 653 ...

 $ MSFT: num  35.8 35.2 35.2 34.5 34.7 ...

 $ IBM : num  109 105 104 100 100 ...

 $ T   : num  41.5 41.2 41 41.1 41.3 ...
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So, we loaded the Quandl package that provides the Quandl function taking 
several arguments:

•	 The first parameter (code="USER_1KR/1KT") is the dataset code on Quandl
•	 The start_date and end_date parameters optionally specify the time period 

we are interested in and that is set to be the last 5 years from now
•	 Please see ?Quandl for more options; for example, type could be used to 

import the data that already exists in some time-series object instead of a raw 
data.frame

The str command run on the newly created IT variable shows the internal structure 
of the R object, which currently holds a Date field and the prices of five assets in  
a numeric format.

After assigning the prices from IT (without the first Date column) to assets, let us 
run the preceding minvariance function's body line by line. First, we compute the 
return of the assets by dividing each but the first value (tail) with the preceding 
(head) and computing log for each quotient:

> assets <- IT[, -1]

> return <- log(tail(assets, -1) / head(assets, -1))

Please note that the return can be also computed with the returns function from the 
timeSeries package that we did not call here for didactical purposes. To verify what 
our command did, let us check the first few values of the newly created variable:

> head(return)

          AAPL         GOOG          MSFT          IBM             T

2 -0.019560774 -0.011044063 -0.0160544217 -0.038916144 -0.0072534167

3 -0.020473237 -0.008161516 -0.0008521517 -0.008429976 -0.0043774389

4 -0.054749384 -0.038621208 -0.0183544011 -0.036242948  0.0007309051

5 -0.006142967 -0.001438475  0.0046202797 -0.001997005  0.0051014322

6 -0.050317921 -0.035793820 -0.0396702524 -0.023154566 -0.0514590970

7  0.036004806  0.023482511  0.0292444412 -0.003791959 -0.0123204844
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Next, we start building the left side of the linear equality system specified at the 

Lagrange theorem: 
1

Q

r

 
 
 
 
 

�

�  where we combine the covariance matrix (cov), ones repeated 
(rep) by the number of columns (ncol) in the dataset and the means (colMeans)  
of the returns as rows (rbind).

> Q <- rbind(cov(return), rep(1, ncol(assets)), colMeans(return))

That would end up as follows:

> round(Q, 5)

        AAPL    GOOG     MSFT     IBM        T

AAPL 0.00063 0.00034  0.00025 0.00023  0.00022

GOOG 0.00034 0.00046  0.00023 0.00019  0.00018

MSFT 0.00025 0.00023  0.00034 0.00018  0.00018

IBM  0.00023 0.00019  0.00018 0.00024  0.00016

T    0.00022 0.00018  0.00018 0.00016  0.00028

     1.00000 1.00000  1.00000 1.00000  1.00000

     0.00075 0.00001 -0.00024 0.00044 -0.00018

Please note that we have rounded the results to five digits for the sake of readability. 
Also note that the average return of the Microsoft (MSFT) and AT&T was negative. 
Now, we also combine the last two rows of the matrix (tail) as new columns 
(rbind) on the left to make it complete for the linear system with the extra zeros 
specified in the Lagrange theorem (matrix of 2x2):

> Q <- cbind(Q, rbind(t(tail(Q, 2)), matrix(0, 2, 2)))

> round(Q, 5)

        AAPL    GOOG     MSFT     IBM        T           

AAPL 0.00063 0.00034  0.00025 0.00023  0.00022 1  0.00075

GOOG 0.00034 0.00046  0.00023 0.00019  0.00018 1  0.00001

MSFT 0.00025 0.00023  0.00034 0.00018  0.00018 1 -0.00024

IBM  0.00023 0.00019  0.00018 0.00024  0.00016 1  0.00044

T    0.00022 0.00018  0.00018 0.00016  0.00028 1 -0.00018

     1.00000 1.00000  1.00000 1.00000  1.00000 0  0.00000

     0.00075 0.00001 -0.00024 0.00044 -0.00018 0  0.00000
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By default, mu is 0.005 (specified in the minvariance function's argument); this is the 

last value of the vector on the right side of the linear system 
0
1
µ

 
 
 
   :

> mu <- 0.005

> b  <- c(rep(0, ncol(assets)), 1, mu)

> b

[1] 0.000 0.000 0.000 0.000 0.000 1.000 0.005

After successfully building the parts of the linear equality system, you are only left 
with the task of solving it:

> solve(Q, b)

         AAPL          GOOG          MSFT           IBM             T

 2.3130600636 -1.0928257246 -2.7830264740  4.9871895547 -2.4243974197

-0.0001254637 -1.2082468413

The preceding code is equivalent to running the function in one go, which would 
take the dataset and optionally, the desired return as its arguments. The result is the 
vector of optimal weights and the Lagrange multipliers to get the desired expected 
return with a minimal variance:

> minvariance(IT[, -1])

         AAPL          GOOG          MSFT           IBM             T 

 2.3130600636 -1.0928257246 -2.7830264740  4.9871895547 -2.4243974197 

-0.0001254637 -1.2082468413

Note that on top of the Microsoft and AT&T stocks, Google is also shorted in the 
optimum. We can use this output to get a complete solution for the optimization 
problem, which can be also processed further with other software with the help  
of the write.csv function. And instead of calculating the minimum variance for  
a given level of return, we can also get the minimum variance for a larger range  
of returns. If we modify the code, we can get something as follows:

frontier <- function(assets) {
    return <- log(tail(assets, -1) / head(assets, -1))
    Q  <- cov(return)
    n  <- ncol(assets)
    r  <- colMeans(return)
    Q1 <- rbind(Q, rep(1, n), r)
    Q1 <- cbind(Q1, rbind(t(tail(Q1, 2)), matrix(0, 2, 2)))
    rbase <- seq(min(r), max(r), length = 100)
    s  <- sapply(rbase, function(x) {
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        y <- head(solve(Q1, c(rep(0, n), 1, x)), n)
        y %*% Q %*% y
    })
    plot(s, rbase, xlab = 'Return', ylab = 'Variance')
}

The code is the same, except that it takes a number (length = 100) of different 
return values between (seq) the minimum and maximum asset returns and 
calculates the variance of the optimal portfolios. We can then plot the return-variance 
pairs (s and rbase) to illustrate the solution of the problem. The result is shown  
in the following screenshot:

On the variance-return plane, the desired return-minimum variance curve is called 
Portfolio Frontier. Ignoring its downward sloping part (the same variance can be 
reached with a higher return), we get Efficient Frontier; there is no reason to choose 
a portfolio outside Efficient Frontier.

It is well-known that it is enough to calculate Portfolio Frontier for two given levels 
of return and combine the resulting portfolios to get the whole frontier.
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Similar results can be achieved with some built-in functions of R packages without 
much coding. For example, the fPortfolio package provides a bunch of useful 
methods, ready to be applied on time-series objects. For this end, we have to 
transform the asset columns of the original IT dataset to a timeSeries object defined 
by the first column:

> library(timeSeries)

> IT <- timeSeries(IT[, 2:6], IT[, 1])

Just like we did in the mean-variance function, the return can be defined in the  
time-series by dividing each element with the prior one and computing the 
logarithm, although some useful time-series commands (such as lag) can make  
this easier:

> log(lag(IT) / IT)

Or even simpler with the other built-in functions:

> IT_return <- returns(IT)

As we have a time-series object now, it is extremely easy to plot the returns:

> chart.CumReturns(IT_return, legend.loc = 'topleft', main = '')

The return of the five stocks in IT_return would then look like the following figure:
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The preceding frontier chart can be interactively drawn by plotting the results  
of portfolioFrontier:

> library(fPortfolio)

> plot(portfolioFrontier(IT_return))

Make a plot selection (or 0 to exit):

1:   Plot Efficient Frontier

2:   Add Minimum Risk Portfolio

3:   Add Tangency Portfolio

4:   Add Risk/Return of Single Assets

5:   Add Equal Weights Portfolio

6:   Add Two Asset Frontiers [LongOnly Only]

7:   Add Monte Carlo Portfolios

8:   Add Sharpe Ratio [Markowitz PF Only]

To mimic what we have implemented in the preceding code, let us render the 
Frontier plot of short sale constraints:

> Spec = portfolioSpec()

> setSolver(Spec) = "solveRshortExact"

> Frontier <- portfolioFrontier(as.timeSeries(IT_return),

+                 Spec, > constraints = "Short")

> frontierPlot(Frontier, col = rep('orange', 2), pch = 19)

> monteCarloPoints(Frontier, mcSteps = 1000, cex = 0.25, pch = 19)

> grid()
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In the preceding code, we have set a special portfolioSpec S4 object with a function 
(solveRshortExact) that optimizes an unlimited short selling portfolio. The result 
of the computation (portfolioFrontier) is rendered by frontierPlot with orange 
colored circles (pch = 19); some smaller (cex = 0.25) Monte Carlo-simulated 
points are also added to the graph beside a grid in the background as shown in the 
following diagram:

Tangency portfolio and Capital Market 
Line
What happens when a riskless asset R  is added to the model? If 0Rσ =  and 
X is any risky portfolio, then 2( (1 ) ) (1 ) ( )Var R X Var Xα α α+ − = −  and obviously, 
( (1 ) ) ( ) (1 ) ( )E R X E R E Xα α α α+ − = + − . This means that those portfolios form a straight 

line on the mean-standard deviation plane. Any portfolio on this line is available  
by investing into R and X. It is clear that the best choice for X is the point where this 
line is tangent to Efficient Frontier. This tangency point is called the market portfolio 
or tangency portfolio, and the tangent of Efficient Frontier of risky assets at this point 
is called Capital Market Line (CML), which consists of the efficient portfolios of all 
the assets in this case. The last question that we address regarding the mean-variance 
model is how the market portfolio (or equivalently, the CML) can be determined.
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We can easily modify the variance minimization code to accomplish this. First  
of all, if we add a riskless asset, a full-zero row and column is added to the 
covariance matrix (where n is the number of assets including the riskless one):

> n <- 6; mu <- 0.005

> Q <- cbind(cov(return), rep(0, n - 1))

> Q <- rbind(Q, rep(0, n))

And the riskless return (let rf be 0.0001) is added to the return vector:

> r <- c(colMeans(return), rf)

After this, we can use the new covariance matrix and the new return vector  
to determine the optimal portfolio weights and then eliminate the nth asset  
based on the minvariance code described in the Working with real data section:

> Q <- rbind(Q, rep(1, n), r)

> Q <- cbind(Q, rbind(t(tail(Q, 2)), matrix(0, 2, 2)))

> b <- c(rep(0, n), 1, mu)

With the following intermediate results:

> round(Q, 6)

         AAPL     GOOG      MSFT      IBM         T                 r

AAPL 0.000630 0.000338  0.000249 0.000233  0.000218 0e+00 1  0.000748

GOOG 0.000338 0.000462  0.000226 0.000186  0.000182 0e+00 1  0.000008

MSFT 0.000249 0.000226  0.000341 0.000178  0.000177 0e+00 1 -0.000236

IBM  0.000233 0.000186  0.000178 0.000240  0.000157 0e+00 1  0.000439

T    0.000218 0.000182  0.000177 0.000157  0.000283 0e+00 1 -0.000179

     0.000000 0.000000  0.000000 0.000000  0.000000 0e+00 1  0.000100

     1.000000 1.000000  1.000000 1.000000  1.000000 1e+00 0  0.000000

r    0.000748 0.000008 -0.000236 0.000439 -0.000179 1e-04 0  0.000000

> b

[1] 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.005

After solving the equation, the result is the market portfolio:

> w <- solve(Q, b)

> w <- head(w, -3)

> w / sum(w)

      AAPL       GOOG       MSFT        IBM          T

-10.154891   4.990912  12.347784 -18.010579  11.826774
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Noise in the covariance matrix
When we optimize a portfolio, we don't have the real covariance matrix and  
the expected return vector (that are the inputs of the mean-variance model); we  
use observations to estimate them, so Q, r, and the output of the model are also 
random variables.

Without going into the details, we can say that this leads to surprisingly great 
uncertainty in the model. In spite of the strong law of large numbers, optimal 
portfolio weights sometimes vary between 200%± . Fortunately, if we have a few 
years' data (daily returns), the relative error of the measured risk is only 20-25 %.

When variance is not enough
Variance as a risk measure is convenient, but has some drawbacks. For instance, 
when using variance, positive changes in the return can be considered as the increase 
of risk. Therefore, more sophisticated risk measures have been developed.

For example, see the following short demo about various methods applied against 
the previously described IT_return assets for a quick overview about the options 
provided by the fPortfolio package:

> Spec <- portfolioSpec()

> setSolver(Spec) <- "solveRshortExact"

> setTargetReturn(Spec) <- mean(colMeans(IT_return))

> efficientPortfolio(IT_return, Spec, 'Short')

> minvariancePortfolio(IT_return, Spec, 'Short')

> minriskPortfolio(IT_return, Spec)

> maxreturnPortfolio(IT_return, Spec)

These R expressions return different portfolio weights computed by various methods 
not discussed in this introductory chapter. Please refer to the package bundled 
documentation, such as ?portfolio, and the relevant articles and book chapters  
in the References section for details.
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Summary
This chapter covered portfolio optimization. After presenting the main idea,  
we introduced the Markowitz model and its mathematical formulation. We 
discussed the methods for possible solutions and implemented a simple algorithm  
to demonstrate how these methods work on real data. We have also used pre-written 
R packages to solve the same problem. We broadly discussed other important 
subjects like the market portfolio, the uncertainty in the estimation of the covariance 
matrix, and the risk measures beyond variance. We hope that this was a useful first 
run on the topic and you are encouraged to study it further or check out the next 
chapter, which is about a related subject—asset pricing models.
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Asset Pricing Models
Covered in this chapter are the problem of absolute pricing (Cochrane 2005) 
and how the value of assets with uncertain payments is determined based on 
their risk. Chapter 2, Portfolio Optimization, modeled the decision-making of an 
individual investor based on the analysis of the assets' return in a mean variance 
framework. This chapter focuses on whether or not equilibrium can exist in financial 
markets, what conditions are needed, and how it can be characterized. Two main 
approaches—Capital Asset Pricing Model and Arbitrage Pricing Theory—will be 
presented, which use completely different assumptions and argumentation, but give 
similar descriptions of the return evolution.

According to the concept of relative pricing, the riskiness of the underlying product 
is already involved in its price and, so, it does not play any further role in the pricing 
of the derived instrument; this will be presented in Chapter 6, Derivatives Pricing.  
The no-arbitrage argument will force consistency in the prices of the derivative  
and underlying assets there.

The objective of this chapter is to present the relationship between the asset return 
and the risk factor. We will explain how to download and clean data from multiple 
sources. Linear regression is used to measure the dependence and the connected 
hypothesis test shows the significance of the results. The one-factor index model  
is tested through a two-step regression process and the financial interpretation  
of the results is shown.
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Capital Asset Pricing Model
The first type of model explaining asset prices uses economic considerations. Using 
the results of the portfolio selection presented in the previous chapter, the Capital 
Asset Pricing Model (CAPM) gives an answer to the question asking what can be 
said of the market by aggregating the rational investors' decisions and, also, by what 
assumption the equilibrium would evolve. Sharpe (1964) and Lintner (1965) prove  
the existence of the equilibrium subject to the following assumptions:

•	 Individual investors are price takers
•	 Single-period investment horizon
•	 Investments are limited to traded financial assets
•	 No taxes and no transaction costs
•	 Information is costless and available to all investors
•	 Investors are rational mean-variance optimizers
•	 Homogenous expectations

In a world where these assumptions are held, all investors will hold the same 
portfolio of risky assets, which is the market portfolio. The market portfolio contains 
all securities and the proportion of each security is its market value as a percentage 
of the total market value. The risk premium on the market depends on the average 
risk aversion of all market participants. The best-known consequence of the resulting 
equilibrium is a linear relationship between market risk premium and the individual 
security's risk:

( ) ( ) ( )1i f i m fE r r E r rβ  − = −   

E(r
i
) is the expected return of a certain security, r

f
 is the risk-free return, E(r

m
)  

is the expected return of the market portfolio. The risk in CAPM is measured  
by the beta β

i
, which is a function of the individual security's covariance with  

the market and the variance of the market return:

( ), 2i m
i

m

Cov
Var

β =

Cov
i,m

 is the covariance between the given security's return and the market return, 
while Var

m
 is the variance of the market return.
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Beta has numerous interpretations. On the one hand, beta shows the sensitivity  
of a stock's return to the return of the market portfolio and, on the other, a certain 
security's beta shows how much risk that security adds to the market portfolio.  
The CAPM states that the market gives a higher return only in cases of higher 
systematic risk since unsystematic risk can be diversified, so no risk premium  
can be paid after that.

If we rearrange equation (1), we will get a linear equation of the so called Security 
Market Line (SML):

( ) ( ) ( )3i f i m fE r r E r rβ  = + − 

CAPM states that in equilibrium, every security should be on the SML; so, this 
equation holds for each security or portfolio even if they are not efficient. If this 
equation is not fulfilled, there is a lack of equilibrium on the market. For example,  
if a security's return on the market is higher than it should be according to the 
CAPM, every investor has to change the composition of his/her portfolio in order  
to decrease the security's return and fulfill the above equation.

Arbitrage Pricing Theory
The Arbitrage Pricing Theory (APT) of Ross (1977) is also used in finance to 
determine the return of different securities. The APT states that, in equilibrium,  
no arbitrage opportunity can exist and, also, that the expected return of an asset  
is the linear combination of multiple random factors (Wilmott 2007). These factors  
can be various macro-economic factors or market indices. In this model, each factor 
has a specific beta coefficient:

( )1
4n

i i ij j ij
r F eα β

=
= + +∑

α
i
 is a constant denoting security i; β

ij
 is the sensitivity of security i to factor j; F

j
  

is the systematic factor; while e
i
 is the security's unsystematic risk, with zero mean.

www.it-ebooks.info

http://www.it-ebooks.info/


Asset Pricing Models

[ 46 ]

A central notion of the APT is the factorportfolio. A factorportfolio is a well-
diversified portfolio which reacts to only one of the factors, so it has zero beta for 
all other factors, and a beta of 1 to that specified factor. Assuming the existence 
of the factorportfolios, it can be shown using the arbitrage argument that any 
well-diversified portfolio's risk premium is equal to the weighted sum of the 
factorportfolios' risk premium (Medvegyev-Száz 2010). If it is to hold for every well-
diversified portfolio, the expected return of an individual security will be built up by 
the risk premium of the factor (RP

j
) and its sensitivity to the factor (β

ij
):

( ) ( )1
5n

i f ij jj
E r r RPβ

=
= +∑

In case there is only one factor in the APT model, which is the return of the market 
portfolio, we call the model the index model. Moreover, if α

i
 is zero, we will get the 

exact pricing formula of CAPM.

The differences between the CAPM and APT are as follows:

•	 CAPM is an equilibrium model, building on economic considerations, while 
APT is a statistical model, using arbitrage arguments.

•	 In the case of APT, an expected return-beta relation can be given if one has a 
well-diversified portfolio so that this can be constructed in practice by having 
a large number of assets in the portfolio. While, in the case of CAPM, the so-
called market portfolio cannot be constructed.

•	 CAPM states that the expected return-beta relation holds for every security, 
while APT states that this is for almost every security.

•	 When there is mispricing on the market, in the case of APT, it is enough if 
only a few investors change the portfolio structure to get the fair price of a 
security; while, in the case of CAPM, every investor has to do so.

Beta estimation
The sensitivity of a security towards a factor can be estimated from past price 
movements. We will estimate the beta from the one-factor index model. First, we 
show the process of collecting and synchronizing data from different sources and 
then present the simple beta estimation method and, at last, a linear regression 
model is built.
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Data selection
We download the time series of the price of a given stock, for example Google,  
and the time series of the price of the market index, the S&P 500, from June 1st 2009  
to June 1st 2013 from Quandl, as discussed in the second chapter:

> library(Quandl)

> Quandl.auth("yourauthenticationtoken")

> G <- Quandl('GOOG/NASDAQ_GOOG',

+   start_date = '2009-06-01', end_date = '2013-06-01')

The resulting G is a variable containing 6 variables, from which we only need the 
Close values:

> str(G)

'data.frame':     1018 obs. of  6 variables:

 $ Date  : Date, format: "2009-06-01" "2009-06-02" ...

 $ Open  : num  419 426 426 435 445 ...

 $ High  : num  430 430 432 441 447 ...

 $ Low   : num  419 423 424 434 439 ...

 $ Close : num  427 428 432 440 444 ...

 $ Volume: num  3323431 2626012 3535593 3639434 3681002 ...

> G <- G$Close

The same code is run for the S&P 500 data, although we deal with the Adjusted 
Close values now:

> SP500 <- Quandl('YAHOO/INDEX_GSPC',

+   start_date = '2009-06-01', end_date = '2013-06-01')

> SP500 <- SP500$'Adjusted Close'

Adjusted closing prices are used as they have been corrected with dividends and 
splits. As Google paid no dividend and had no split in the period, such adjustment is 
unnecessary in this example. We will also need the time series of the risk-free return, 
which will be the 1 month USD LIBOR rate. Although we will be working with daily 
returns, the 1 month rates can be regarded as short-term rates and are less affected 
by random noises than the overnight rates.

> LIBOR <- Quandl('FED/RILSPDEPM01_N_B',

+   start_date = '2009-06-01', end_date = '2013-06-01')

> LIBOR <- LIBOR$Value
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As you can see from the previous Quandl calls, each time, the series was fetched 
from different data providers. This also results in some differences in the data 
structure as we have Close values with Google, Adjusted Close values with S&P 
500, and simply Values for the LIBOR data. The length of the vectors does not seem 
to be equal either:

> sapply(list(G, SP500, LIBOR), length)

[1] 1018 1008 1024

This means that some time series also include dates that are omitted from the others. 
Let us define the intersect function of the dates and filter the results to only those 
cells after re-downloading the values:

> G     <- Quandl('GOOG/NASDAQ_GOOG',

+          start_date = '2009-06-01', end_date = '2013-06-01')

> SP500 <- Quandl('YAHOO/INDEX_GSPC',

+          start_date = '2009-06-01', end_date = '2013-06-01')

> LIBOR <- Quandl('FED/RILSPDEPM01_N_B',

+          start_date = '2009-06-01', end_date = '2013-06-01')

As the intersect function can only be applied to two vectors, we call the Reduce 
function to identify the common dates in the three time series:

> cdates <- Reduce(intersect, list(G$Date, SP500$Date,LIBOR$Date))

Now, let us simply filter all three data frames to the relevant cells to get the vectors:

G      <- G[G$Date %in% cdates, 'Close']

SP500  <- SP500[SP500$Date %in% cdates, 'Adjusted Close']

LIBOR  <- LIBOR[LIBOR$Date %in% cdates, 'Value']

After downloading and cleaning the data, you have to calculate the log-returns (r
t
) 

of the stock and the market index using the following formula:

( )
1

6t
it

t

sr ln
s −

 
=  

 

S
t
 is the market price on day t. In R, this would be expressed as a function (see 

Chapter 2, Portfolio Optimization, for details):

> logreturn <- function(x) log(tail(x, -1) / head(x, -1))
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For the next step, the risk premiums should be determined by subtracting the 
risk-free daily log-return (r

ft
). As the LIBOR rates are quoted on a money-market 

basis—actual/360 day-count convention—and the time series contains the rates in 
percentage, the following formula is to be used:

( ) ( )( ) ( )1 * 1 7
36000f t

USDLIBORr ln t t = + + − 
 

t and t-1 refer to the dates, so the difference is the number of days between the two 
closing values, that is usually 1, in our case, or more if there are non-working days 
in-between. The results can be computed in R easily using the following commands:

> rft <- log(1 + head(LIBOR, -1)/36000 * diff(cdates)) 

> str(rft)

num [1:1001] 1.81e-05 1.81e-05 1.81e-05 1.81e-05 5.42e-05 ...

We have computed (t+1)—t by computing the diff between the common dates, 
just described. And the risk premium (R

it
) is given by:

( )8it it ftR r r= −

Simple beta estimation
Once we have both time series; the individual asset's (Google, in our case) and the 
market's (S&P 500) risk premium, beta can be calculated based on equation (2):

> cov(logreturn(G) - rft, logreturn(SP500) - rft) / 

+   var(logreturn(SP500) - rft)

[1] 0.8997941

This could be also simplified by adding a new function to describe the risk premium:

> riskpremium <- function(x) logreturn(x) - rft

> cov(riskpremium(G), riskpremium(SP500)) / var(riskpremium(SP500))

[1] 0.8997941
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This way of calculating beta differs from equation (2), since we've used the risk 
premiums instead of the returns. As CAPM and APT are both one-period models, 
correction with the risk-free return on both sides does not affect the result. On the 
other hand, upon estimating beta from the time series, we have to decide whether 
to use returns or risk premiums in the model as the parameters will differ, except 
for in the case of a constant risk-free return (Medvegyev-Száz 2010). We follow the 
previously described method as we would follow the financial literature, but we 
have to add that Merryl Lynch calculates betas from returns.

Beta estimation from linear regression
We can use linear regression in order to estimate beta, where the explanatory 
variable is the Market Risk Premium (MRP), while the dependent variable will be 
the risk premium of the security. So, the regression equation has the following form, 
which is the formula for the Security Characteristic Line (SCL):

( )9i i i m iR R eα β= + +

We will use the Ordinary Least Squared (OLS) estimation to determine the linear 
regression model of equation (8). The intercept of the characteristic line is α, the 
part of the stock return unexplained by the market factor. The slope of the function 
(equation (8)) shows the sensitivity toward the market factor, measured by beta.

We can easily compute the regression model using the built-in lm command in R:

> (fit <- lm(riskpremium(G) ~ riskpremium(SP500)))

Call:

lm(formula = riskpremium(G) ~ riskpremium(SP500))

Coefficients:

       (Intercept)  riskpremium(SP500)  

         0.0002078           0.8997941

We have not only saved the results, but also printed them because of the extra braces 
we've added. With the help of the model, it is also easy to plot the characteristic 
line of Google on a chart that shows the risk premium of Google as a function of the 
market risk premium.

> plot(riskpremium(SP500), riskpremium(G))

> abline(fit, col = 'red')
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The following figure shows the results. On the x axis there is the MRP, while the y 
axis shows the risk premium of the Google stock:

According to CAPM, α equals to zero, therefore we will assume α
i
 to be 0, then we 

release this restriction. We can force α to be zero by passing -1 in the model:

> fit <- lm(riskpremium(G) ~ -1 + riskpremium(SP500))

The summary of the results of the regression model in R are as follows:

> summary(fit)

Call:

lm(formula = riskpremium(G) ~ -1 + riskpremium(SP500))

Residuals:

      Min        1Q    Median        3Q       Max 

-0.089794 -0.005553  0.000166  0.005520  0.117087 
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Coefficients:

                   Estimate Std. Error t value Pr(>|t|)    

riskpremium(SP500)  0.90048    0.03501   25.72   <2e-16 ***

---

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.0124 on 1000 degrees of freedom

Multiple R-squared:  0.3982,	 Adjusted R-squared:  0.3976 

F-statistic: 661.6 on 1 and 1000 DF,  p-value: < 2.2e-16

The high F-statistic value shows that the model has explaining power, beta 
proves to be significant, and the null-hypothesis—beta would be zero—is to be 
rejected at any significance level. These results are in line with CAPM.

If we're running the test by releasing the assumption of zero α, we can see that the 
intercept does not differ significantly from zero. The high p-value value shows that 
we cannot reject the null-hypothesis at any usual (above 90%) significance level:

> summary(lm(riskpremium(G) ~ riskpremium(SP500)))

Call:

lm(formula = riskpremium(G) ~ riskpremium(SP500))

Residuals:

      Min        1Q    Median        3Q       Max 

-0.089999 -0.005757 -0.000045  0.005307  0.116883 

Coefficients:

                    Estimate Std. Error t value Pr(>|t|)    

(Intercept)        0.0002078  0.0003924   0.529    0.597    

riskpremium(SP500) 0.8997941  0.0350463  25.674   <2e-16 ***

---

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.01241 on 999 degrees of freedom

Multiple R-squared:  0.3975,	 Adjusted R-squared:  0.3969 

F-statistic: 659.2 on 1 and 999 DF,  p-value: < 2.2e-16
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We can check the residuals on a joint plot as shown in the following figure.

> par(mfrow = c(2, 2))

> plot(fit)

You can also find built-in functions in the PerformanceAnalytics package, CAPM.
alpha and CAPM.beta, that calculate the parameters alpha and beta for a given asset. 
The requested parameters are the series of the asset's and the benchmark asset's 
return and the risk-free rate.
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Model testing
The first tests on the beta-return relationship used two-phase linear regression 
(Lintner 1965). The first regression estimates the security characteristic line and 
beta of the individual securities as described above. In the second regression, the 
security's risk premium is the dependent variable, whereas beta is the explanatory 
variable. The null-hypothesis assumes the intercept to be zero and the slope of 
the curve to be the market risk premium, which is estimated as the average of 
the sample. The test can be extended by an additional explanatory variable: the 
individual variance.

Data collection
We will present the test using a sample of the US market in the pre-crisis period 
between 2003 and 2007. As daily data includes more short-term effects, we will apply 
the test on monthly returns calculated from the daily time series. So, we need the 
time series of the daily price of more stocks; let us download the prices of the first 
100 stocks from S&P 500 in alphabetical order between 2003 and 2007:

> symbols <- c("A", "AA", "AAPL", "ABC", "ABT", "ACE", "ACN", "ACT", 
"ADBE", "ADI", "ADM", "ADP", "ADSK", "AEE", "AEP", "AES","AET", "AFL", 
"AGN", "AIG", "AIV", "AIZ", "AKAM", "ALL", "ALTR", "ALXN", "AMAT", "AMD", 
"AMGN", "AMP", "AMT", "AMZN", "AN", "ANF", "AON", "APA", "APC", "APD", 
"APH", "APOL", "ARG", "ATI", "AVB", "AVP", "AVY", "AXP", "AZO", "BA", 
"BAC", "BAX", "BBBY", "BBT", "BBY", "BCR", "BDX", "BEAM", "BEN", "BF.B", 
"BHI", "BIIB", "BK", "BLK", "BLL", "BMC", "BMS", "BMY", "BRCM", "BRK.B", 
"BSX", "BTU", "BXP", "C", "CA", "CAG", "CAH", "CAM", "CAT", "CB", "CBG", 
"CBS", "CCE", "CCI", "CCL", "CELG", "CERN", "CF", "CHK", "CHRW", "CI", 
"CINF", "CL", "CLF", "CLX", "CMA", "CMCSA", "CME")

Please note that the previous list includes only 96 stock names as four stocks had too 
many missing values in the referenced time interval.

Let us download these datasets from a uniform database with the tseries package:

> library(tseries)

> res <- lapply(symbols, function(symbol)

+   get.hist.quote(symbol, quote = "AdjClose", quiet = TRUE,

+   start = as.Date('2003-01-01'), end = as.Date('2007-01-01')))
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So, we call the get.hist.quote function to each symbol to download the Adjusted 
close data from the default (Yahoo!) provider without any details about the progress 
(quiet). Please note that the fetching process might take some time and will result 
in a list of 96 time series. Now, let us also update SP500 and LIBOR for the new time 
interval and define the new intersect for the common dates:

> LIBOR <- Quandl('FED/RILSPDEPM01_N_B',

+            start_date = '2003-01-01', end_date = '2007-01-01')

> SP500 <- Quandl('YAHOO/INDEX_GSPC',

+            start_date = '2003-01-01', end_date = '2007-01-01')

> cdates <- intersect(LIBOR$Date, SP500$Date)

As explained above, we need a monthly dataset instead of the downloaded daily 
values; let us pick the first values in each month. To this end, we need to save the list 
of the common dates in the Date format:

> d <- data.frame(date = as.Date(cdates, origin = '1970-01-01'))

> str(d)

'data.frame':	998 obs. of  1 variable:

 $ date: Date, format: "2003-01-02" "2003-01-03" ...

Next, we need to add the day of the month plus the year and month concatenated to 
the very same data frame:

> d$day <- format(d$date, format = '%d')

> d$my  <- format(d$date, format = '%Y-%m')

Now we simply apply the min function in each group of my (that stands for the same 
month in the same year) on the day variable, which stands for the day of the month:

> (fds <- with(d, tapply(day, my, min)))

2003-01 2003-02 2003-03 2003-04 2003-05 2003-06 2003-07 2003-08 

   "02"    "03"    "03"    "01"    "01"    "02"    "01"    "01" 

2003-09 2003-10 2003-11 2003-12 2004-01 2004-02 2004-03 2004-04 

   "02"    "01"    "03"    "01"    "02"    "02"    "01"    "01" 

2004-05 2004-06 2004-07 2004-08 2004-09 2004-10 2004-11 2004-12 

   "03"    "01"    "01"    "02"    "01"    "01"    "01"    "01" 

2005-01 2005-02 2005-03 2005-04 2005-05 2005-06 2005-07 2005-08 

   "03"    "01"    "01"    "01"    "02"    "01"    "01"    "01" 

2005-09 2005-10 2005-11 2005-12 2006-01 2006-02 2006-03 2006-04 
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   "01"    "03"    "01"    "01"    "03"    "01"    "01"    "03" 

2006-05 2006-06 2006-07 2006-08 2006-09 2006-10 2006-11 2006-12 

   "01"    "01"    "03"    "01"    "01"    "02"    "01"    "01"

We have to merge the results with the dates again:

> (fds <- as.Date(paste(row.names(fds), fds, sep = '-')))

 [1] "2003-01-02" "2003-02-03" "2003-03-03" "2003-04-01" "2003-05-01"

 [6] "2003-06-02" "2003-07-01" "2003-08-01" "2003-09-02" "2003-10-01"

[11] "2003-11-03" "2003-12-01" "2004-01-02" "2004-02-02" "2004-03-01"

[16] "2004-04-01" "2004-05-03" "2004-06-01" "2004-07-01" "2004-08-02"

[21] "2004-09-01" "2004-10-01" "2004-11-01" "2004-12-01" "2005-01-03"

[26] "2005-02-01" "2005-03-01" "2005-04-01" "2005-05-02" "2005-06-01"

[31] "2005-07-01" "2005-08-01" "2005-09-01" "2005-10-03" "2005-11-01"

[36] "2005-12-01" "2006-01-03" "2006-02-01" "2006-03-01" "2006-04-03"

[41] "2006-05-01" "2006-06-01" "2006-07-03" "2006-08-01" "2006-09-01"

[46] "2006-10-02" "2006-11-01" "2006-12-01"

And filter the res data frame again to the above identified dates:

> res <- lapply(res, function(x) x[which(zoo::index(x) %in% fds)])

Then, after merging the list with a time series, it is pretty straightforward to convert 
the list to the usual data.frame format with pretty column names:

> res <- do.call(merge, res)

> str(res)

'zoo' series from 2003-01-02 to 2006-12-01

  Data: num [1:48, 1:96] 17.8 15.3 12.1 12.5 15 ...

  Index:  Date[1:48], format: "2003-01-02" "2003-02-03" ...

> res <- as.data.frame(res)

> names(res) <- symbols
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That would result in a data frame of 48 rows and 96 columns. We still need to 
compute the returns for each downloaded stock on a column basis, but, to this end, 
rft should also be updated based on the first values in each month:

> LIBOR <- LIBOR[LIBOR$Date %in% fds, 'Value']

> rft <- log(1 + head(LIBOR, -1)/36000 * as.numeric(diff(fds)))

> res <- apply(res, 2, riskpremium)

Let us also filter the S&P 500 values as a monthly data set:

> SP500 <- SP500[SP500$Date %in% fds, 'Adjusted Close']

Modeling the SCL
Using the time series of the stocks' returns, we can calculate the beta for each 
security. Consequently, we will have the vector of the risk premium as the average of 
the sample data and a vector containing the betas.

The second regression to be estimated is as follows:

( )0 1 10l iR γ γ β= +

Computing the beta for each security and also the mean of the returns in one go can 
be done with a basic loop after computing the riskpremium parameter of each stock 
and coercing that to make it a data.frame:

> res <- apply(res, 2, riskpremium)

> res <- as.data.frame(res)

> r <- t(sapply(symbols, function(symbol)

+        c(beta = lm(res[, symbol] ~ 

+                    riskpremium(SP500))$coefficients[[2]],

+          mean = mean(res[, symbol]))

+ ))

> r <- as.data.frame(r)
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So, iterating through all symbols, let us plot the returned list of computed betas and 
the averages of the risk premiums as shown in the following figure:

> plot(r$beta, r$mean)

> abline(lm(r$mean ~ r$beta), col = 'red')

That model can be described as follows:

> summary(lm(r$mean ~ r$beta))

Call:

lm(formula = r$mean ~ r$beta)

Residuals:

      Min        1Q    Median        3Q       Max 

-0.024046 -0.008783 -0.003475  0.006485  0.039731 
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Coefficients:

            Estimate Std. Error t value Pr(>|t|)    

(Intercept) 0.009084   0.002429   3.740 0.000325 ***

r$beta      0.005528   0.001678   3.295 0.001413 ** 

---

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.01383 on 89 degrees of freedom

  (5 observations deleted due to missingness)

Multiple R-squared:  0.1087,	 Adjusted R-squared:  0.09873 

F-statistic: 10.86 on 1 and 89 DF,  p-value: 0.001413

According to the above results, the intercept is positive, but it does not differ 
significantly from zero. The slope of the SML equals to 0.5528%—on a monthly 
basis—that is slightly lower than expected, as according to the null-hypothesis, it 
should be the average of the market risk premium of the period: 0.69%. However, 
this difference is also statistically insignificant. Based on the test, the beta return 
relationship can not be rejected.

Testing the explanatory power of the 
individual variance
The test can be developed further, involving the unsystematic risk tested as a second 
explanatory variable. The individual risk of a security is to be calculated as follows:

( )2 2 2 2 11ei i i mσ σ β σ= −

So, first we have to calculate the vector of the variances, then we get the vector of the 
individual variances. The regression equation to be estimated is as follows:

( )2
0 1 2 12l i eiR γ γ β γ σ= + +

Till now, we update the above loop created for computing the betas and means in r:

> r <- t(sapply(symbols, function(symbol) {

+    stock <- res[, symbol]

+    beta  <- lm(stock ~ riskpremium(SP500))$coefficients[[2]]

+    c(

+        beta = beta,
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+        mean = mean(stock, na.rm = TRUE),

+        risk = var(stock, na.rm = TRUE) - beta^2 * var(SP500))

+ }))

> r <- as.data.frame(r)

Although this loop is almost identical to the previous one, most of the body was 
rewritten and reformatted based on DRY (Don't Repeat Yourself) principles. So, 
first we have stored the values of symbol in stock and also computed beta before 
returning the results concatenated with c. Now, we've also added the na.rm = TRUE 
parameter to the mean and var functions to remove possible missing values before 
computations. Our model now looks as follows:

> summary(lm(r$mean ~ r$beta + r$risk))

Call:

lm(formula = r$mean ~ r$beta + r$risk)

Residuals:

      Min        1Q    Median        3Q       Max 

-0.023228 -0.009175 -0.003657  0.006817  0.036262 

Coefficients:

              Estimate Std. Error t value Pr(>|t|)    

(Intercept)  1.400e-02  3.711e-03   3.772 0.000285 ***

r$beta      -1.743e-03  4.677e-03  -0.373 0.710293    

r$risk      -9.956e-08  5.798e-08  -1.717 0.089266 .  

---

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.01381 on 93 degrees of freedom

Multiple R-squared:  0.1451,	 Adjusted R-squared:  0.1267 

F-statistic: 7.891 on 2 and 93 DF,  p-value: 0.0006833

Interestingly, the new parameter changed the regression coefficient of beta to 
negative. On the other hand, however, the risk parameter proved to be insignificant 
on a 95% significance level. As CAPM concludes that no risk premium is to be paid 
for diversifiable risk, the null-hypothesis assumes β

2
 to be zero. Here, we cannot 

reject this hypothesis.
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Miller and Scholes (1972) explained the first CAPM tests' results—α differed 
significantly from zero and the slope was much lower than the average of the market 
risk premium—with statistical reasons. As the explanatory variable of the second 
regression (betas) derived from an estimation—from the first regression—it contained 
statistical error. This estimation bias causes the observed significant intercept and the 
flatter than expected SML. This statement can be investigated on simulated returns. 
Further details on simulations can be found in the next two chapters.

Summary
In this chapter, the systematic risk of asset returns was measured by their 
contribution to the market's variance—the beta. We used linear regression to 
quantify this relationship. Hypothesis tests were run in order to confirm the 
statements of the capital assets pricing model.
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Fixed Income Securities
In Chapter 3, Asset Pricing Models, we focused on models establishing a relationship 
between the risk measured by its beta, the price of financial instruments, and 
portfolios. The first model, CAPM, used an equilibrium approach, while the second, 
APT, has built on the no-arbitrage assumption.

The general objective of fixed income portfolio management is to set up a portfolio 
of fixed income securities with a given risk/reward profile. In other words, portfolio 
managers are aiming at allocating their funds into different fixed income securities, 
in a way that maximizes the expected return of the portfolio while adhering to the 
given investment objectives.

The process encompasses the dynamic modeling of the yield curve, the prepayment 
behavior, and the default of the securities. The tools used are time series analysis, 
stochastic processes, and optimization.

The risks of fixed income securities include credit risk, liquidity risk, and market 
risk among others. The first two can be handled by selecting only securities with 
predetermined default risk, for example, with a minimum credit rating and with 
proper liquidity characteristics. The market risk of a fixed income security is 
generally captured by duration, modified duration, keynote duration, or factor 
duration. All measures of the interest rate risk a fixed income security faces. This 
chapter focuses on the market risk of fixed income securities.
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Measuring market risk of fixed income 
securities
The general formula to obtain the present value of a fixed income security given  

a yield curve is: ( )0 1

T
t
t

t t

CFP
y=

=
+

∑ , where T is the time until maturity of the security, CFt  

is the cash flow of the security at time t, and yt is the discount rate of a cash flow to be 

received at time t. The market price of the bond will converge to its par value as time 
passes, even if its yield to maturity remains constant. This price change is expected, 
hence it is not considered a risk. Market risk arises from the changes in interest  
rates, which causes reinvestment risk and liquidation risk. The first affects the rate  
at which coupon payments can be reinvested, and the second impacts the market 

price of the bond.

The market price impact of interest rate change is measured by examining the 

price of the bond as a function of its yield to maturity (y): ( )0 1

T
t
t

t

CFP
y=

=
+

∑ . Since 

( )
2

2
2

1 ...
2

dP d PP y y
dy dy

∆ = ∆ + ∆ + , the percentage change of the price caused by a y∆  change 

in yield is expressed as: ( )
2

2
2

1 1 1 ...
2

P dP d Py y
P P dy P dy
∆

= ∆ + ∆ + , the second order approximation 

of /P P∆  is ( ) ( )2 2* 1 1
2 1 2

P DD y Convexity y y Convexity y
P y
∆

= − ∆ + ∆ = − ∆ + ∆
+ . When yields  

are expressed periodically, compounded duration (D), modified duration (D*),  
and convexity are defined as follows:

•	 ( ) ( )
0

/ 11 1
tT

t

t

CF ydPD y t
P dy P=

+
= − + = ×∑

•	 ( )* / 1D D y= +

•	
( )

( )
( )

22

22
0

1 1 1
1 1

T
t

t
t

CF t td PConvexity
P dy P y y=

+
= =

+ +
∑
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The pricing formula of the bond shows the obvious inverse relationship between  
a bond's yield to maturity (y) and its price (P). Since duration relates to the change  
in the yield to maturity of the bond to the associated change in its price, it is the most 
important measure of the bond's interest rate risk. Duration is the weighted average 
maturity of the bond.

Example – implementation in R
Consider a 10-year bond with USD 1,000 par value paid at maturity, an annual 
8% coupon paid quarterly, and assume that the yield curve is flat at 10% using 
continuous compounding.

To compute the above described indices, we will use the GUIDE package that 
provides a graphical user interface to various financial calculators and interactive 
plots for pricing financial derivatives, so in the following examples, most parameters 
will be set in a more intuitive way compared to the other chapters.

After installing and loading the package, the main program can be started via  
the GUIDE function:

> install.packages('GUIDE')
> library(GUIDE)
> GUIDE()

That will load the main window with a menu to access the 55 functions of the 
package, as shown in the following screenshot:

The functions can also be called by direct R commands beside the top menu bar.
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The fair value is quickly given by the bondprice as USD 867.28. The priceyield 
function demonstrates the inverse relationship between a discount rate and the 
bond's price. The duration of the bond is determined by bonddur, as shown in  
the following screenshot:
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The function can be set to reflect annual or semi-annual Coupon payments, and 
the Frequency of the discount rate can be varied. The function also allows for the 
calculation of Modified Duration. The Convexity of the same bond is calculated by 
bondconv, as shown in the following screenshot:

Please note that when discount rates are expressed in continuously compounded 
yields, the convexity is given by the formula:

 

( )
2

2
2

0

1 1 exp
T

t
t

d PConvexity CF yt t
P dy P =

= = −∑

The duryield and durcoupon functions can be used to assess how increasing yield 
affects duration, and how larger coupon impacts the duration of bonds.
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The relationship between Duration and Maturity is showed by the durmaturity 
function as displayed in the following screenshot:

 

Having calculated the duration or convexity of a bond, a portfolio's duration or 
convexity is easily computed as the weighted average of the portfolio's individual 
elements' duration or convexity.

Other packages such as maRketSim and termstrc also include functions capable  
of calculating duration, modified duration, and convexity of bonds, or even of entire 
fixed income portfolios.

Immunization of fixed income portfolios
A portfolio is immunized when it is unaffected by interest rate change. Duration 
gives a good measure of interest rate sensitivity; therefore, it is generally used to 
immunize portfolios. As using duration assumes a flat yield curve and a little parallel 
shift of the yield curve, the immunized portfolio is constrained by these assumptions, 
and being unaffected will mean that the value of the portfolio changes only slightly 
as yields change.

There are two different kinds of immunization strategies: net worth immunization 
and target date immunization.
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Net worth immunization
Fixed income portfolio managers often have a view on the way the yield curve 
will change in the future. Let us assume that a portfolio manager expects rates to 
increase in the near future. As this would have an unfavorable effect on the portfolio, 
the portfolio manager could decide to set the duration of the portfolio to zero by 
entering into forward agreements or interest rate swaps. These instruments alter the 
portfolio's duration and can help in setting the portfolio's duration to zero without 
having to liquidate the entire portfolio.

Another goal of a portfolio manager can be to set the duration of the portfolio 
relative to the duration of the portfolio's benchmark. This helps in outperforming the 
portfolio's benchmark should their anticipation on market movements be justified.

Banks are usually more interested in protecting their equities' value from market price 
changes. This is carried out by setting their equities' duration to the desired level.

Target date immunization
Let us consider an investor with a given liability cash flow stream. Immunization  
of the investor's portfolio will be achieved by constructing an asset portfolio of fixed 
income securities, with a duration that equals the duration of the liabilities. This 
target date immunization ensures that future payment obligations will be met from 
the assets of the portfolio. That process can be addressed by, for example,  
the genPortfolio.bond function.

Dedication
Dedication is a special kind of target date immunization where the cash flows of the 
assets are matched with each and every component of the liabilities. One way this 
can be carried out is by funding the liability components with zero coupon bonds.

Pricing a convertible bond
Convertible bonds are usually issued by firms with low credit rating and high 
growth potential. These firms can lower their interest costs by giving the right  
(but with no obligation), to the bondholder to convert the bond into a specified 
number of shares of common stock of the issuing company. The investor receives  
the potential upside of conversion into equity, while having downside protection 
with cash flows from the bond. The company benefits from the fact that when  
the convertibles are converted, the leverage of the company decreases while  
the trade-off is the stock dilution when the bonds are converted.
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These characteristics state that the convertible bonds' behavior has three different 
stages: in-the-money convertible bonds (conversion price < equity price) behave 
like equity, at-the-money (conversion price = equity price) convertible bonds are 
considered as equity and debt, while out-of-the money (conversion price > equity 
price) convertible bonds show debt-like behavior. Pricing a convertible bond can 
be complex even within the Black-Scholes-Merton model framework, but the basic 
principle is pricing the bond and the option separately.

Let us consider a 5-year convertible bond with USD 100 par value, 5% coupon, 
annual interest payment, and with the right to convert the par at maturity to 4 shares 
of common stock. Assume that the risk-free rate is 5% for all maturities, the credit 
spread of the bond is 2%, the price of the underlying stock is USD 20,  
the volatility of the stock is 20%, and the dividend yield is zero. R can be used to 
value this convertible bond. First, we define the date for today that will be used  
in the following example:

> today <- Sys.Date()

Next, we set the trade and settlement dates and compute the values of the discount 
curve given a flat yield curve (based on the times argument that is, a sequence 
between 0 and 10 for now with the step being 0.1):

> params <- list(tradeDate  = today - 2,

+                settleDate = today,

+                dt         = 0.25)

> times <- seq(0, 10, 0.1)

> dividendYield <- DiscountCurve(params, list(flat = 10e-6), times)

> riskFreeRate  <- DiscountCurve(params, list(flat = 0.05), times)

The preceding dividend yield, risk-free rate, and the following fixed underlying 
asset's price and volatility will be passed to the Black-Scholes process later, which 
will set up the binomial pricing engine for this bond:

> process <- list(

+     underlying = 20,

+     divYield   = dividendYield,

+     rff        = riskFreeRate,

+     volatility = 0.2)
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We should also specify the conversion ratio, which determines how many shares  
of the common stock the bondholder would get if he decides to convert his bond  
to equity. The par value of the bond and the credit spread are also specified here:

> bondparams <- list(

+     exercise        = "eu",

+     faceAmount      = 100,

+     redemption      = 100,

+     creditSpread    = 0.02,

+     conversionRatio = 4,

+     issueDate       = as.Date(today + 2),

+     maturityDate    = as.Date(today + 1825))

With annual coupon payments:

> dateparams <- list(

+     settlementDays        = 3,

+     dayCounter            = "ActualActual",

+     period                = "Annual",

+     businessDayConvention = "Unadjusted")

And pass the above specified parameters to the ConvertibleFixedCouponBond 
function:

> ConvertibleFixedCouponBond(bondparams, coupon = 0.05, process, 
dateparams)

Concise summary of valuation for ConvertibleFixedCouponBond 

 Net present value :  107.1013 

       clean price :  107.06 

       dirty price :  107.1 

    accrued coupon :  0.041096 

             yield :  0.033848 

        cash flows : 

       Date   Amount

 2014-06-21   4.9589

 2015-06-21   5.0000

 2016-06-21   5.0073

 2017-06-21   4.9927

 2018-06-21   5.0000

 2018-06-21 100.0000
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The value of the bond excluding the convertible feature would be approximately 
USD 92, while the value with the extra feature becomes USD 107.1. Now let us check 
the change of the net present value if we start to raise the price of the underlying 
stock from 1 to 30:

> res <- sapply(seq(1, 30, 1), function(s) {

+     process$underlying = s

+     ConvertibleFixedCouponBond(bondparams, coupon = 0.05, process, 
dateparams)$NPV

+ })

> plot(1:30, res, type = 'l',

+    xlab = 'Price of the underlying stocks',

+    ylab = 'Net Present Value')

The following figure shows the relationship between the price of the underlying 
stock and the calculated value of the convertible bond:
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Summary
In this chapter, we have used R to measure a fixed income portfolio's interest rate 
risk. We have covered selected functions of the GUIDE package, and applied the 
convertible bond pricing function of the RQuantLib package. In the next chapter, 
you'll learn how you can use R for estimating the spot yield curve.
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Estimating the Term Structure 
of Interest Rates

In the previous chapter we discussed how changes in the level of interest rates,  
the term structure, affect the prices of fixed income securities. Now we focus on  
the estimation of the term structure of interest rates, which is a fundamental concept 
in finance. It is an important input in almost all financial decisions. This chapter 
will introduce term structure estimation methods by cubic spline regression, and it 
will demonstrate how one can estimate the term structure of interest rates using the 
termstrc package and the govbonds dataset.

The term structure of interest rates and 
related functions
A t-year zero-coupon bond with a face value of 1 USD is a security that pays 1 
USD at maturity, that is, in t years time. Let ( )d t  denote its market value, which is 
also called the t-year discount factor. The function [ ]: 0,d T R→  is called the discount 
function. Based on the no-arbitrage assumption, it is usually assumed that ( )0 1d =
, ( )d t  is monotonically decreasing, and that ( ) 0d t > . It is also usually assumed that 
( )d t  is twice continuously differentiable.

Let ( )r t  denote the continuously compounded annual return of the t-year zero 
coupon bond; it shall be defined as:

( ) ( )
1 11r t n
t d t

 
=   

 
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The function [ ]: 0,r T R→  is called the (zero coupon) yield curve.

Let [ ]: 0,f T R→  denote the instantaneous forward rate curve or simply the forward 
rate curve, where:

( ) ( ) ( ) ( )
( )0

1n | / |
lim
h

d t d t h d t
f t

h d t↓

′+
= = −

Here ( )f t  is the interest rate agreed upon by two parties in a hypothetical forward 
loan agreement, in which one of the parties commits to lend an amount to the other 
party in t years time for a very short term and at an interest rate that is fixed when 
the contract is signed.

The discount function, the yield curve, and the forward rate curve mutually 
determine each other and are a possible representation of the term structure  
of interest rates. The term structure may relate to any and all of these functions.

The estimation problem
We cannot observe the term structure directly, but we can observe the market prices 
of instruments whose price depends on the term structure and thus estimate the 
term structure. A good source of information regarding the term structure is the 
government bond market, where usually a lot of liquid securities are traded whose 
prices depend solely on the term structure.

Suppose there are n bonds traded whose gross (or dirty) prices are denoted by 
nRρ ∈ . There are m dates when at least one bond's owners receive a payment. These 

payments are due in 1 2, ,..., mt t t  years time respectively where 10 ... mt t T< < < = . The 
n m×  matrix C contains the cash flows of the bonds. We model bond prices as the sum 
of the present value of the bond's cash flow and a normally distributed error term:

( )Cd 1p ε= +
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Here d is the vector containing the discount factors ( )jd t  and ε  is a vector 
containing the error terms. The observed market price of a bond can differ from the 
present value of the cash flow for two reasons: there might be a measurement error 
in the observed market price and/or there might be slight market imperfections, 
such as transaction costs, which allow for a small difference between the theoretical 
and the market price, without the difference being an arbitrage opportunity. The 
variance of the error terms might differ from bond to bond:

( )
( ) 2

0E

E

ε

εε σ

=

′ = Ω

Here, Ω  is an n n×  positive semidefinite diagonal matrix. It is logical to assume that 
the standard deviation of the error term in the price of a bond is proportional to its 
bid-ask spread, that is, the difference between the bid and asked price of the bond. 
Thus, iiω  is often chosen as the squared bid-ask spread of bond i.

Equation (1) looks like a typical linear regression, however, it usually cannot be 
estimated directly as the number of observations (bond prices) is usually less than 
the number of coefficients to be estimated. Because of this, we need to model the 
term structure to reduce the number of parameters to be estimated, and to ensure 
that the resulting term structure estimation is reasonable.

Estimation of the term structure by linear 
regression
Suppose that the discount function can be expressed as the linear combination of the 
1 2, ,..., lf f f  functions that are twice continuously differentiable functions as

( ) ( )
1

l

k k
k

d t w f t
=

= ∑

where

( ) ( )
1

0 0 1
l

k k
k

d w f
=

= =∑
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We can estimate the weights kw  by generalized least squares. We will discuss  
the choice of the functions kf  later. The estimated discount function is the function  
of the estimated weights ˆ kw .

( ) ( )
1

ˆ ˆ
l

k k
k

d t w f t
=

= ∑

Let D denote an m l×  matrix whose elements jkd  are ( )k jf t , and lw R∈ be the vector 
that contains the weights kw . Thus Dwd =  and

( )CDw 2p ε= +

which is a linear regression model under the constraint that ( )0 1d = , which can be 
expressed as follows:

' 1r w =                   (3)

where ( ) ( ) ( )( )1 20 , 0 ,..., 0lr f f f′ = .

The GLS estimation for the weights of equation (2) under the constraint of equation 
(3) is

( ) ( ) ( )
11 11 1ˆ * * 1w w X X r r X X r r w
−− −− − ′ ′ ′ ′= − Ω Ω −  

where

( ) 11 1

CD

*

X

w X X X p
−− −

=

′ ′= Ω Ω
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Cubic spline regression
We need to choose the functions kf  carefully if we want the estimation to yield  
a reasonably estimated discount function. The typical discount function is nonlinear. 
It is a monotonically decreasing function and converges to zero asymptotically at 
infinity. Thus, fitting a straight line is not a good idea. One can try to fit a higher order 
polynomial to the discount function. This is not a satisfactory solution either. If we 
fit low-order polynomials, they are usually not flexible enough and don't fit well, 
especially at the short-term maturities. If we fit high-order polynomials, they may fit 
well but tend to produce wild swings at long-term maturities where relatively few 
bonds mature. These wild swings usually result in unrealistic term structure estimates.

Spline functions are functions that help solve this problem as their flexibility can 
be increased locally where needed, without raising the polynomial order of the 
estimated function. Estimating the term structure by fitting cubic splines to the 
discount function was first proposed by McCulloch in 1971.

Cubic splines are real functions whose domain is an interval of the real line. The 
domain [ ]0 , kb b  is divided into subintervals by the so-called knot points 0 1, , ... , Kb b b  
where 0 1 ... kb b b< < < . The cubic spline function is a cubic polynomial on every subinterval, 
and these cubic polynomials are joined at the knot points so that the spline function is 
continuous and twice continuously differentiable on [ ],t T . Every cubic spline function 
on [ ],t T  and a given set of knot points 0 1, , ... , Kb b b  can be expressed as the linear 
combination of 3K +  basis spline functions that are cubic splines over the same knot 
points. Thus, if we want to fit a cubic spline to the discount function, we simply choose 
the functions kf  as a cubic spline basis, which we will demonstrate in the German 
government bonds data from the govbonds dataset.

> data(govbonds)
> str(govbonds[['GERMANY']])
List of 8
 $ ISIN        : chr [1:52] "DE0001141414" "DE0001137131" "DE0001141422" 
"DE0001137149" ...
 $ MATURITYDATE: Date[1:52], format: "2008-02-15" "2008-03-14" ...
 $ ISSUEDATE   : Date[1:52], format: "2002-08-14" "2006-03-08" ...
 $ COUPONRATE  : num [1:52] 0.0425 0.03 0.03 0.0325 0.0413 ...
 $ PRICE       : num [1:52] 100 99.9 99.8 99.8 100.1 ...
 $ ACCRUED     : num [1:52] 4.09 2.66 2.43 2.07 2.39 ...
 $ CASHFLOWS   :List of 3
  ..$ ISIN: chr [1:384] "DE0001141414" "DE0001137131" "DE0001141422" 
"DE0001137149" ...
  ..$ CF  : num [1:384] 104 103 103 103 104 ...
  ..$ DATE: Date[1:384], format: "2008-02-15" "2008-03-14" ...
 $ TODAY       : Date[1:1], format: "2008-01-30"
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The dataset holds information about 52 German bonds, from which we will 
concentrate on the issue and maturity dates, price, and provided cash flows. To create 
a similar dataset ready for further analysis, please see the examples of ?govbonds.

First, we preprocess the bond dataset with the prepro_bond function that returns 
cash flows, maturities, yield-to-maturity, duration-based weight matrices plus dirty 
price, and accrued interest vectors, among other values:

> prepro <- prepro_bond('GERMANY', govbonds)

An important decision is setting the number of knot points and placing them. 
The first and last knot points are zero and T respectively, and the others are 
usually chosen so that approximately the same number of bonds mature at every 
subinterval. Setting the number of knot points is not so straightforward. It will 
determine the number of parameters to be estimated and will influence the estimated 
term structure crucially. One could start the estimation process by setting K to 1, 
then increasing it by one and repeating the estimation until there is significant 
improvement in goodness of fit and the estimated term structure is well behaved. 
Alternatively, one can follow the rule of thumb proposed by McCulloch that the 
number of knot points be n  approximately. We now demonstrate that in the 
following command with the help of the maturity matrix decomposed from the 
prepro object:

> m <- prepro$m[[1]]

And let us define the number of German bonds with n and its rounded square root 
by s (number of knot points) that results in 7:

> n <- ncol(m)

> s <- round(sqrt(n))

If s results in a number less than three, identifying the ideal knot points is easy.  
We will use the following command:

> c(floor(min(y[, 1])), max(m[, ncol(m)]))

Here we have identified the smallest (min) number in the first column and the largest 
(max) number from the last (ncol) column from the maturity matrix rounded to the 
largest integer just below the results (floor).
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If s is higher than three, the first and last knot points are defined just as in the 
preceding command lines and the others between those points are computed with 
some helper vectors with the length of s-3, as shown in the following commands:

> i     <- 2:(s-2)

> h     <- trunc(((i - 1) * n) / (s - 2))

> theta <- ((i - 1) * n) / (s - 2) - h

The i vector simply holds the sequence from 2 to 5 in this case, from which we 
compute the indices of the column (h) from the maturity matrix that will be used  
to search other knot points. Here theta is used as a weight.

> apply(as.matrix(m[, h]), 2, max) + 
+     theta * (apply(as.matrix(m[, h + 1]), 2, max) –  
+     apply(as.matrix(m[, h]), 2, max))

Here we find the highest number in each hth column of the maturity matrix and  
add the theta-weighted difference of the h+1 and h columns' maximum results  
in the following output:

DE0001135101 DE0001141463 DE0001135218 DE0001135317

    1.006027     2.380274     5.033425     9.234521

Now we concatenate (with the c function) the first (minimum) and the last 
(maximum) value computed earlier to the preceding results copied from the 
preceding code chunk to identify all knot points:

> c(floor(min(y[, 1])), apply(as.matrix(m[, h]), 2, max) + theta * 
(apply(as.matrix(m[, h + 1]), 2, max) - apply(as.matrix(m[, h]), 2, 
max)), max(m[, ncol(m)]))

        DE0001135101 DE0001141463 DE0001135218 DE0001135317        

0.0000     1.006027     2.380274     5.033425     9.234521  31.44657

Applied R functions
Although we have already used some functions from the termstrc package in the 
previous example to demonstrate how one can determine the ideal number of knot 
points and also specify those, this process can be done in an easier manner with some 
further R functions, as shown in the following command lines:

> x <- estim_cs(govbonds, 'GERMANY')

> x$knotpoints[[1]]

       DE0001135101 DE0001141463 DE0001135218 DE0001135317              

0.0000     1.006027     2.380274     5.033425     9.234521 31.44657
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First we used the estim_cs function that estimates the term structure of coupon 
bonds based on cubic splines (Ferstl-Haydn, 2010) and returns the knot points in a list 
with the knotpoints name. Please note that estim_cs works with a list—just like 
most functions in the package—that's why x$knotpoints returned a list from which 
we checked only the first element that was identical to the values we computed 
manually in the preceding section.

There are a bunch of other useful values returned by the preceding function that  
by default result in the following command lines:

---------------------------------------------------

Estimated parameters and robust standard errors:

---------------------------------------------------

[1] "GERMANY:"

t test of coefficients:

           Estimate  Std. Error t value  Pr(>|t|)    

alpha 1  1.9320e-02  1.5230e-02  1.2686    0.2111    

alpha 2 -8.4936e-05  3.7926e-03 -0.0224    0.9822    

alpha 3 -3.2009e-04  1.1359e-03 -0.2818    0.7794    

alpha 4 -3.7101e-04  3.9074e-04 -0.9495    0.3474    

alpha 5  7.2921e-04  9.9560e-05  7.3243 3.375e-09 ***

alpha 6  2.0159e-03  1.3019e-04 15.4843 < 2.2e-16 ***

alpha 7 -4.1632e-02  4.5903e-03 -9.0696 1.011e-11 ***

---

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The goodness of fit can be shown with the summary function, just like with  
other R models:

---------------------------------------------------

Goodness of fit:

---------------------------------------------------

                    GERMANY 

RMSE-Prices         0.198573

AABSE-Prices        0.131036

RMSE-Yields (in %)  0.130108

AABSE-Yields (in %) 0.057223
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The zero-coupon yield curve and its confidence interval can be shown easily with  
the knot points by simply calling plot on the x object.

The preceding figure shows the estimated zero-coupon yield curve and the  
yield-to-maturity of the individual bonds in the database. The two bonds with  
the shortest maturities are outliers as they are probably less liquid before 
expiration. We see that the estimated yield curve is very close to the yield to 
maturity for 10 years. For longer maturities, the estimated zero-coupon yields are 
typically higher than the corresponding yield to maturity of coupon bonds. It may 
be the result of an imperfect fit, or it may be explained by the fact that these bonds  
are not zero-coupon bonds but coupon bonds.
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And by setting mfrow with par, we can also plot two different graphs on the same 
frame (we also set multiple=TRUE so that the plots would be rendered without 
waiting for user input). For example, let us draw the discount and forward curves 
from the x object using the following commands:

> par(mfrow = c(2,1))

> plot(x$discount, multiple = TRUE)

> plot(x$forward, multiple = TRUE)
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In the preceding figure, we see that the estimated discount function and the forward 
rate curves are well behaved and do not show the presence of arbitrage opportunities 
(the discount function is monotonically decreasing, and the forward rate curve does 
not produce unrealistic values and swings).

The cubic spline estimation of the term structure usually leads to good estimates. 
Sometimes, however, the estimated term structure is not appealing (the forward 
rate curve swings widely). In this case, one can use nonlinear spline regression or 
parsimonious yield curve models, but these are beyond the scope of this chapter.

Further resources such as the Nelson/Siegel, Diebold/Li, Svensson, and Adjusted 
Svensson methods are also available with the help of the estim_nss function or  
the YieldCurve package.

Summary
In this chapter, we discussed term structure estimation methods by cubic spline 
regression and also demonstrated how one can estimate the term structure of interest 
rates in R. After a brief theoretical introduction to term structure and interest rates, 
also discussing the most basic methods such as a linear regression model and related 
problems, the chapter gave a detailed overview of an R implementation of cubic 
spline regression model and also mentioned already published R functions and 
packages for such tasks with more complex expectations.
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Derivatives Pricing
Derivatives are financial instruments which derive their value from (or are 
dependent on) the value of another product, called the underlying. The three basic 
types of derivatives are forward and futures contracts, swaps, and options. In this 
chapter we will focus on this latter class and show how basic option pricing models 
and some related problems can be handled in R. We will start with overviewing how 
to use the continuous Black-Scholes model and the binomial Cox-Ross-Rubinstein 
model in R, and then we will proceed with discussing the connection between these 
models. Furthermore, with the help of calculating and plotting of the Greeks, we  
will show how to analyze the most important types of market risks that options 
involve. Finally, we will discuss what implied volatility means and will illustrate  
this phenomenon by plotting the volatility smile with the help of real market data.

The most important characteristics of options compared to futures or swaps is that you 
cannot be sure whether the transaction (buying or selling the underlying) will take 
place or not. This feature makes option pricing more complex and requires all models 
to make assumptions regarding the future price movements of the underlying product. 
The two models we are covering here differ in these assumptions: the Black-Scholes 
model works with a continuous process while the Cox-Ross-Rubinstein model works 
with a discrete stochastic process. However, the remaining assumptions are very 
similar and we will see that the results are close (moreover, principally identical) too.

The Black-Scholes model
The assumptions of the Black-Scholes model (Black and Sholes, 1973, see also Merton, 
1973) are as follows:

•	 The price of the underlying asset (S) follows geometric Brownian motion:
dS Sdt SdWµ σ= +
Here µ (drift) and σ (volatility) are constant parameters and W is a standard 
Wiener process.
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•	 The market is arbitrage-free.
•	 The underlying is a stock paying no dividends.
•	 Buying and (short) selling the underlying asset is possible in any (even 

fractional) amount.
•	 There are no transaction costs.
•	 The short-term interest rate (r) is known and constant over time.

The main result of the model is that under these assumptions, the price of a 
European call option (c) has a closed form:

•	 ( ) ( ) ( )1 2r T tc SN d Xe N d− −= −

•	
( )

2

2
1

Sln r T t
X

d
T t

σ

σ

   + + −   
   =

− ,

•	 2 1d d T tσ= − − ,

Here X is the strike price, T-t is the time to maturity of the option, and N denotes the 
cumulative distribution function of the standard normal distribution. The equation 
giving the price of the option is usually referred to as the Black-Scholes formula. It is 
easy to see from put-call parity that the price of a European put option (p) with the 
same parameters is given by:

( ) ( ) ( )2 1r T tp Xe N d SN d− −= − − −

Now consider a call and put option on a Google stock in June 2013 with a maturity 
of September 2013 (that is, with 3 months of time to maturity). Let us assume that 
the current price of the underlying stock is USD 900, the strike price is USD 950, the 
volatility of Google is 22%, and the risk-free rate is 2%. We will calculate the value of 
the call option with the GBSOption function from the fOptions package. Beyond the 
parameters already discussed, we also have to set the cost of carry (b); in the original 
Black-Scholes model, (with underlying paying no dividends) it equals the risk-free rate.

> library(fOptions)

> GBSOption(TypeFlag = "c", S = 900, X =950, Time = 1/4, r = 0.02,

+   sigma = 0.22, b = 0.02)

Title:

 Black Scholes Option Valuation
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Call:

 GBSOption(TypeFlag = "c", S = 900, X = 950, Time = 1/4, r = 0.02,

     b = 0.02, sigma = 0.22)

Parameters:

          Value:

 TypeFlag c     

 S        900   

 X        950   

 Time     0.25  

 r        0.02  

 b        0.02  

 sigma    0.22  

Option Price:

 21.79275

Description:

 Tue Jun 25 12:54:41 2013

This prolonged output returns the passed parameters with the result just below the 
Option Price label. Setting the TypeFlag to p would compute the price of the put 
option and now we are only interested in the results (found in the price slot—see 
the str of the object for more details) without the textual output:

> GBSOption(TypeFlag = "p", S = 900, X =950, Time = 1/4, r = 0.02, sigma 
= 0.22, b = 0.02)@price

[1] 67.05461

Like in the previous chapter, we also have the choice to compute the preceding 
values with a more user-friendly calculator provided by the GUIDE package. 
Running the blackscholes() function would trigger a modal window with a form 
where we can enter the same parameters. Please note that the function uses the 
dividend yield instead of cost of carry, which is zero in this case.
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The Cox-Ross-Rubinstein model
The Cox-Ross-Rubinstein (CRR) model (Cox, Ross and Rubinstein, 1979) assumes 
that the price of the underlying asset follows a discrete binomial process. The price 
might go up or down in each period and hence changes according to a binomial 
tree illustrated in the following plot, where u and d are fixed multipliers measuring 
the price changes when it goes up and down. The important feature of the CRR 
model is that u=1/d and the tree is recombining; that is, the price after two periods 
will be the same if it first goes up and then goes down or vice versa, as shown in 
the following figure:

To build a binomial tree, first we have to decide how many steps we are modeling 
(n); that is, how many steps the time to maturity of the option will be divided into. 
Alternatively, we can determine the length of one time step T tt

n
−

∆ =t, (measured in years) 
on the tree:

T tt
n
−

∆ =

If we know the volatility (σ) of the underlying, the parameters u and d are 
determined according to the following formulas:

u e tσ ∆=

And consequently:

td e σ− ∆=
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When pricing an option in a binomial model, we need to determine the tree of the 
underlying until the maturity of the option. Then, having all the possible prices at 
maturity, we can calculate the corresponding possible option values, simply given by 
the following formulas:

•	 ( )max 0,T Tc S X= −

•	 ( )max 0,T Tp X S= −

To determine the option price with the binomial model, in each node we have to 
calculate the expected value of the next two possible option values and then discount 
it. The problem is that it is not trivial what expected return to use for discounting. 
The trick is that we are calculating the expected value with a hypothetic probability, 
which enables us to discount with the risk-free rate. This probability is called risk-
neutral probability (pn) and can be determined as follows:

r t

n
e -d
u-d

p
∆

=

The interpretation of the risk-neutral probability is quite plausible: if the one-period 
probability that the underlying price goes up was pn, then the expected return of the 
underlying would be the risk-free rate. Consequently, an expected value calculated 
with pn can be discounted by r and the price of the option in any node of the tree is 
determined as:

( )1 r t
n u n dg p g p g e− ∆= + −  

In the preceding formula, g is the price of an option in general (it may be call or put 
as well) in a given node, gu and gd are the values of this derivative in the two possible 
nodes one period later.

For demonstrating the CRR model in R, we will use the same parameters as in 
the case of the Black-Scholes formula. Hence, S=900, X=950, σ=22%, r=2%, b=2%, 
T-t=0.25. We also have to set n, the number of time steps on the binomial tree.  
For illustrative purposes, we will work with a 3-period model:

> CRRBinomialTreeOption(TypeFlag = "ce", S = 900, X = 950,
+   Time = 1/4, r = 0.02, b = 0.02, sigma = 0.22, n = 3)@price
[1] 20.33618
> CRRBinomialTreeOption(TypeFlag = "pe", S = 900, X = 950,
+   Time = 1/4, r = 0.02, b = 0.02, sigma = 0.22, n = 3)@price
[1] 65.59803
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It is worth observing that the option prices obtained from the binomial model are 
close to (but not exactly the same as) the Black-Scholes prices calculated earlier. 
Apart from the final result, that is, the current price of the option, we might be 
interested in the whole option tree as well:

> CRRTree <- BinomialTreeOption(TypeFlag = "ce", S = 900, X = 950,
+   Time = 1/4, r = 0.02, b = 0.02, sigma = 0.22, n = 3)
> BinomialTreePlot(CRRTree, dy = 1, xlab = "Time steps",
+   ylab = "Number of up steps", xlim = c(0,4))
> title(main = "Call Option Tree")

Here we first computed a matrix by BinomialTreeOption with the given parameters 
and saved the result in CRRTree that was passed to the plot function with specified 
labels for both the x and y axis with the limits of the x axis set from 0 to 4, as shown 
in the following figure. The y-axis (number of up steps) shows how many times the 
underlying price has gone up in total. Down steps are defined as negative up steps.
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The European put option can be shown similarly by changing the TypeFlag to pe in 
the previous code:

Connection between the two models
After applying the two basic option pricing models, we give some theoretical 
background to them. We do not aim to give a detailed mathematical derivation, but we 
intend to emphasize (and then illustrate in R) the similarities of the two approaches. 
The financial idea behind the continuous and the binomial option pricing is the same: 
if we manage to hedge the option perfectly by holding the appropriate quantity  
of the underlying asset, it means we created a risk-free portfolio. Since the market  
is supposed to be arbitrage-free, the yield of a risk-free portfolio must equal the  
risk-free rate. One important observation is that the correct hedging ratio is holding 
/g S∂ ∂  underlying asset per option. Hence, the ratio is the partial derivative (or its 

discrete correspondent in the binomial model) of the option value with respect to 
the underlying price. This partial derivative is called the delta of the option. Another 
interesting connection between the two models is that the delta-hedging strategy and 
the related arbitrage-free argument yields the same pricing principle: the value of the 
derivative is the risk-neutral expected value of its future possible values, discounted 
by the risk-free rate. This principle is easily tractable on the binomial tree where we 
calculated the discounted expected values node by node; however, the continuous 
model has the same logic as well, even if the expected value is mathematically more 
complicated to compute. This is the reason why we gave only the final result of this 
argument, which was the Black-Scholes formula.
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Now we know that the two models have the same pricing principles and ideas 
(delta-hedging and risk-neutral valuation), but we also observed that their numerical 
results are not equal. The reason is that the stochastic processes assumed to describe 
the price movements of the underlying asset are not identical. Nevertheless, they are 
very similar; if we determine the value of u and d from the volatility parameter as we 
did it in The Cox-Ross-Rubinstein model section, the binomial process approximates the 
geometric Brownian motion. Consequently, the option price of the binomial model 
converges to that of the Black-Scholes model if we increase the number of time steps 
(or equivalently, decrease the length of the steps).

To illustrate this relationship, we will compute the option price in the binomial 
model with increasing numbers of time steps. In the following figure, we compare 
the results with the Black-Scholes price of the option:
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The plot was generated by a loop running N from 1 to 200 to compute 
CRRBinomialTreeOption with fixed parameters:

> prices <- sapply(1:200, function(n) {
+   CRRBinomialTreeOption(TypeFlag = "ce", S = 900, X = 950,
+     Time = 1/4, r = 0.02, b = 0.02, sigma = 0.22, n = n)@price
+ })

Now the prices variable holds 200 computed values:

> str(prices)
 num [1:200] 26.9 24.9 20.3 23.9 20.4...

Let us also compute the option with the generalized Black-Scholes option:

> price <- GBSOption(TypeFlag = "c", S = 900, X = 950, Time = 1/4, r = 
0.02, sigma = 0.22, b = 0.02)@price

And show the prices in a joint plot with the GBS option rendered in red:

> plot(1:200, prices, type='l', xlab = 'Number of steps',
+     ylab = 'Prices')
> abline(h = price, col ='red')
> legend("bottomright", legend = c('CRR-price', 'BS-price'),
+     col = c('black', 'red'), pch = 19)

Greeks
Understanding the risk-types that an option might involve is crucial for all market 
participants. The idea behind Greeks is to measure the different types of risks; they 
represent the sensitivity of the option to different factors. The Greeks of a plain vanilla 
option are: delta (∆ , sensitivity to the underlying price), gamma (Γ , sensitivity  
of delta to the underlying price, delta of delta), theta (θ , sensitivity to time),  
rho ( ρ , sensitivity to the risk-free rate), and vega (V, sensitivity to the volatility).  
In terms of mathematics, all Greeks are partial derivatives of the derivative price:
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The Greeks can be computed easily for each option with the GBSGreeks function:

> sapply(c('delta', 'gamma', 'vega', 'theta', 'rho'), function(greek)

+   GBSGreeks(Selection = greek, TypeFlag = "c", S = 900, X = 950,

+     Time = 1/4, r = 0.02, b = 0.02, sigma = 0.22)

+ )

    delta         gamma          vega         theta           rho

0.347874404   0.003733069 166.308230868 -79.001505841  72.82355323

It is often useful to analyze how a given Greek changes if some market parameters 
change. Such analysis might help us to understand risks better. For example, delta of 
a call option as a function of the underlying price is an increasing curve taking an S 
shape, ranging from 0 to 1. These characteristics are always valid, but if time passes 
and we are approaching the maturity of the option, the curve becomes steeper and 
steeper (see the next figure). The interpretation is as follows: if it is very probable that 
the call option will be exercised, then it is very similar to a long forward contract; 
hence, delta is close to 1. If the chance of exercising is very low, holding the call 
option is similar to holding nothing and delta is 0. As time passes, the interval of 
those underlying prices where the exercising is really uncertain (that is, neither 
very probable, nor very improbable) gets narrower; as a result, the curve of the 
delta becomes steeper. To illustrate this behavior, we will plot the delta of a call as a 
function of the underlying price, with three different maturities.

To compute the deltas, we run two loops: one with three different time values and S 
running from 500 to 1500:

> deltas <- sapply(c(1/4, 1/20, 1/50), function(t)

+             sapply(500:1500, function(S)

+               GBSGreeks(Selection = 'delta', TypeFlag = "c",

+      S = S, X = 950, Time = t, r = 0.02, b = 0.02, sigma = 0.22)))

The resulting deltas holds 1001 rows (for the S values) and three columns (for the 
specified times) that we show in a joint plot:

> plot(500:1500, deltas[, 1], ylab = 'Delta of call option',

+    xlab = "Price of the underlying (S)", type = 'l')

> lines(500:1500, deltas[, 2], col='blue')

> lines(500:1500, deltas[, 3], col='red')

> legend("bottomright", legend = c('t=1/4', 't=1/20', 't=1/50'),

+   col = c('black', 'blue', 'red'), pch = 19)
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The following figure shows the delta of the call options with three different values of 
time to maturity:

Determining or plotting the Greeks of complex option strategies is very similar. For 
example, calculating the delta of a straddle position (a portfolio of a call and a put 
option with the same parameters) means simply calculating deltas separately for the 
call and the put and then adding them. We will plot delta of a straddle as a function 
of the underlying price. We may observe that the shape is very similar to the delta of 
the previous call, but now the S-curve is ranging from -1 to 1:

> straddles <- sapply(c('c', 'p'), function(type)
+                sapply(500:1500, function(S)
+                  GBSGreeks(Selection = 'delta', TypeFlag = type, S = S, 
X = 950, Time = 1/4, r = 0.02, b = 0.02, sigma = 0.22)))

So we call a nested loop running S from 500 to 1500 for both the call and put options 
keeping the other parameters fixed, and save the resulting deltas in a matrix. With 
the next command, the sum of these rows (put and call options) is rendered:

> plot(500:1500, rowSums(straddles), type='l',

+  xlab='Price of the underlying (S)', ylab = 'Delta of straddle')
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The resulting plot illustrates the delta of a straddle position as a function of the 
underlying's price as shown in the following figure:

Implied volatility
The Black-Scholes model is often criticized because of some shortcomings. One 
important problem is that the model assumes constant volatility for the underlying 
asset, which does not hold in reality. Furthermore, since it is not observable directly, 
the volatility is the most complicated parameter of the model to calibrate. Due 
to this difficulty, the Black-Scholes formula is often used in an indirect way for 
estimating the volatility parameter; we observe the market price of an option, 
then in view of all the other parameters we can search for σ that results a Black-
Scholes price equal to the observed market price. This σ parameter is called the 
implied volatility of the option. As Riccardo Rebonato famously stated, implied 
volatility is "the wrong number to put in the wrong formula to get the right price" 
(Rebonato, 1999, p.78).
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We will illustrate the calculation of implied volatility with the help of some Google 
options. The options are call options with the maturity of September 21, 2013 and 
strike prices ranging from USD 700 to USD 1150 (76 different options). We collected 
the ask prices of these options on June 25, 2013 from finance.google.com and put 
them in a CSV file. For the calculations, we need to know that the price of Google 
on the given day was USD 866.2. Since the time to maturity is 88 days, we will use 
88/360 years for the Time parameter. The risk-free rate and the cost of carry are 
assumed to remain 2% further on.

First, load the Google options from a CSV file:

> goog <- read.csv('goog_calls.csv')

And then run a loop for each line of the dataset to compute the volatility with the 
given parameters:

> volatilites <- sapply(seq_along(goog$Strike), function(i)

+  GBSVolatility(price = goog$Ask.Price[i], TypeFlag = "c",

+  S = 866.2, X = goog$Strike[i], Time = 88/360, r = 0.02, b = 0.02))

The volatilities variable is a vector holding the computed values:

> str(volatilites)

 num [1:76] 0.258 0.253 0.269 0.267 0.257...

That can be shown against the strike price:

> plot(x = goog$Strike, volatilites, type = 'p',

+    ylab = 'Implied volatiltiy', xlab = 'Strike price (X)')
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Hence, the following figure shows the implied volatilities for different strike prices:

It is worth noticing that the implied volatilities calculated for Google options 
vary according to the strike prices. This is contrary with the Black-Scholes model, 
which assumes constant volatility. The observed implied volatility pattern (lower 
volatilities for medium strike prices) is not unique and appears in financial markets 
quite frequently. Because of the specific form of the curve, the phenomenon is called 
the volatility smile.

Summary
In this chapter, we have used R to price plain vanilla options with the Black-Scholes 
and Cox-Ross-Rubinstein models. Furthermore, we examined the basic Greeks  
and the implied volatility of these options. For more details on the financial 
background of these topics, see (Hull, 2011). Besides getting to know some tools 
from the fOptions package, we have also created a few loops and custom functions 
programmatically for simulation purposes. The next chapter will concentrate on 
how to manage credit risks by various models such as choosing an optimal credit 
portfolio with Monte-Carlo simulation and credit scoring methods.
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This chapter introduces some useful tools for credit risk management. Credit risk  
is the distribution of the financial losses due to unexpected changes in the credit 
quality of a counterparty in a financial agreement (Giesecke 2004). Several tools  
and industrial solutions were developed for managing credit risk. In accordance  
with the literature, one may consider credit risk as the default risk, downgrade risk,  
or counterparty risk. In most cases, the default risk is related directly to the risk  
of non-performance of a claim or credit. In contrast, downgrade risk arises when  
the price of a bond declines due to its worsening credit rating without any realized 
credit event. Counterparty risk means the risk when the counterparty of a contract 
does not meet the contractual obligations. However, the contractual or regulatory 
definition of a credit event can usually be wider than just a missed payment.  
The modeling end estimation of the possibility of default is an essential need  
in all of the three cases.

Managing credit risk is conducted in various ways at financial institutions.  
In general, the tasks in credit risk management are as follows:

•	 Credit portfolio selection (for example, the decision of a commercial bank 
about lending or credit scoring)

•	 Measuring and predicting the probability of default or downgrade (using,  
for example, a credit rating migration matrix with CreditMetrics)

•	 Modeling the distribution of the financial loss due to default or downgrade 
(for a single entity: structural and reduced form pricing and risk models or, 
for a portfolio: dependency structure modeling)

•	 Mitigating or eliminating credit risk (with a hedge, diversification, 
prevention, or insurance; we do not investigate it in this book)
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In this chapter, we will show examples using R for some of the preceding listed 
problems. At first, we introduce the basic concepts of credit loss modeling, namely, 
the structural and reduced form approaches, and their applications in R. After that, 
we provide a practical way correlated random variables with copulas, which is 
a useful technique of structured credit derivative pricing. We also illustrate how 
R manages credit migration matrices and, finally, we give detailed insight into 
credit scoring with analysis tools, such as logit and probit regressions and receiver 
operating characteristic (ROC) analysis.

Credit default models
The goal of the first part of the chapter is to show the methods of using R for pricing 
and performing Monte Carlo simulations with standard credit risk models. The 
following sections give an essential picture of loss distributions and the generating 
and pricing of a single debt instrument.

Structural models
We start with the well-known option-based model of Merton (Merton 1974)  
as the introductory model of structural approach. Merton evaluates risky debt  
as a contingent claim of the firm value. Let us suppose that the V firm value follows 
geometric Brownian motion:

t t t tdV V V dWµ σ= +

In the preceding formula, μ is the drift parameter, σ>0 is the volatility parameter, dW 
is the differential of the Wiener process, and the initial asset value is V

0
>0. The model 

assumes a flat yield curve, with r as the constant interest rate, and lets us define the 
default state as that where the value of the assets V falls below the liabilities (K) upon 
the of maturity of debt (T). We express the VT firm value at maturity as the integral of:

( )0 0
exp

T

T tV V dlnV= ∫

Where we express dlnV
t
 using Ito's lemma to derive the differential of the logarithm 

of firm value as:

2

2t tdlnV dt dWσµ σ
 

= − + 
 
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Along with generating Gaussian distributed random variables for capturing 
( )~ 0,1W tN∆ ∆ , we calculate the VT firm value at maturity with this discrete 

approach in the following way:

2

0 1 2
M

T i iV V exp t Wσµ σ=

  
= − ∆ + ∆  

  
∑

Where ∆t denotes the one-period length of the elapsed time. We simulate the firm 
value with R in accordance with this logic. First, set the parameters of the simulation, 
namely, the initial asset value, the drift, and the volatility parameters in the 
following way:

> V0 <- 100; nu <- 0.1; sigma <- 0.2

Next, declare the length of ∆t and the end of the time periods (Time):

> dt <- 1 / 252; Time <- 1

Let's also compute the number of time periods:

> M <- Time / dt

And finally, decide on the number of generated trajectories:

> n <- 10000

To make pseudo-random generated variables you would be able to replicate later,  
set a random seed every time before calling the generator functions:

> set.seed(117)

And, to produce the increments of the logarithm of the V process (ΔlnV), generate n*M 
numbers from a normal distribution using the specified mean and standard deviation:

> val <- rnorm(n*M,

+   mean = (nu - sigma^2 / 2) * dt, 

+   sd   = sigma * dt^0.5)

And store these numbers in a matrix with M rows and n columns:

> dlnV <- matrix(val, M, n)
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In order to get the variation of the firm value in time (V), summarize the logarithm 
of the increments and, as computed above, take the exponential of this sum and 
multiply it with the initial firm value. The equivalent code for n number  
of trajectories is as follows:

> V <- V0 * exp(apply(dlnV, 2, cumsum))

The used cumsum function is common with the apply command. Plot the first five 
trajectories with matplot as follows:

> matplot(x = seq(0 + dt, Time, dt), y = V[, 1:5], type = 's', lty = 1,  
+    xlab = 'Time',

+    ylab = 'Firm value trajectories',

+    main = 'Trajectories of firm values in the Merton model')

We selected the first five (1:5) columns of V to be plotted with solid (lty=1) and stair 
steps (type='s') lines resulting in the following graph:
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Note that the price of the risky debt is the expected value of the discounted payoff 
of the risky debt at maturity as per the risk neutral or martingale P measure, where 
drift is the r risk-free interest rate as the following formula expresses:

( )min ,P rT
TD E e V K− =  

If we set the r risk-free interest rate and face value of the debt (K):

> r <- 0.05; K <- 80

We can demonstrate the Monte Carlo pricing as the parallel min (pmin) of the debt 
face value and the previously computed V from which we take the Mth column's mean 
as shown in the previous formula, as follows:

> D <- exp(-r * Time) * mean((pmin(V[M, ], K)))

For the standard parameters and the fixed pseudo-random generated variables D, 
risky debt with a face value of 80 dollars counts:

> D

[1] 75.73553

From the Black-Scholes pricing formula of the European call options, the value of 
risky debt value at t=0 can be expressed as the V firm value less the equity value (E), 
which is a European call option on V. Noting the pricing formula with cBS, we get:

( ), , , ,BSD V c V K r Tσ= −

One can calculate debt value with the GBSOption function of the fOptions 
package. After installing and calling the following library, one can use the following 
appropriate function:

> install.packages("fOptions"); library(fOptions)

Set the TypeFlag parameter to "c" (call) and the other parameters to the previously 
defined value. Select parameter b to the r risk-free interest rate to get the Black-Scholes 
European call and write the @price slot at the end of the command to return the value 
of price from the generated object of class fOption:

> V0 - GBSOption(TypeFlag = "c", S = V0, X = K, Time = Time, r = r,

+

b =

r, sigma = sigma)@price
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We receive the following result, which is very close to our previous estimation:

[1] 75.41116

However, there is a small difference between analytically and numerically computed 
prices; with the increasing number of trajectories and decreasing Δt, the price based 
upon Monte Carlo simulation converges to the theoretical price. Let us calculate the 
term structure of credit spreads (denoted by s(T)) on risky debt at t=0 as follows, 
where credit spreads depend on the maturity of debt (T):

( ) 1 Ks T ln r
T D

 = − 
 

For different maturities (from 0.1 to 10 years by 0.1 year), plot these spreads in a 
hump-shaped curve. Define the time grids as follows:

> Time <- seq(0.1, 10, 0.1)

And recalculate the debt value for each point on the grid to calculate the credit 
spreads:

> D <- V0 - GBSOption(TypeFlag = "c", S = V0, X = K, Time = Time, r = r,

+

b = r,

sigma = sigma)@price

It is useful to plot this curve:

> matplot(x = Time, y = creditspreads, type = 'l', xlab = 'Maturity',

+    ylab = 'Credit spreads',

+    main = 'Term structure of credit spreads in the Merton model')
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The following figure shows the team structure of credit spreads in the Merton Model:

There are several extensions of Merton's model, for example, Moody's KMV 
application or the Black and Cox first hitting the time approach.
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Intensity models
The second common and popular approach for modeling credit defaults is the 
intensity-based (reduced form) modeling. In this framework, we assume that the 
default occurs without showing any earlier sign for predictability. The dynamics  
of the default intensity depend on the predicted probability of default. We also show 
an example later in the chapter, where intensity is constant.

The central idea behind the intensity models is that the number of independent 
defaults in a given time interval comes from the Poisson distribution. Let τ

1
, τ

2
, ..., τ

i
, 

..., τ
n
 be random default times. Thus, let N

t
 denote the number of defaults up to time 

t as follows:

1
1

it ti
N τ

∞

≤=
= ∑

Where the indicator function formulates the following:

1,
1

0,i

i
t

if t
otherwiseτ

τ
≤

≤
= 


The probability that the number of jumps equals to k on the [s,t] interval is derived 
from the Poisson distribution where λ

u
 is the instantaneous intensity of default at 

time u:

( ) ( )1|
!

t
us

kt du

t s s us
Prob N N k F du e

k
λ

λ
−∫− = = ∫

The probability of default occurring before time t is the expected value of the 
following generalization exponential cumulative distribution function:

( ) 0
0 0| 1 |

t
sdsPProb t F E e F
λ

τ
− ∫≤ = − 

 
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However, though elementary models use a constant λ hazard rate, industrial models 
apply more complex structures. For example, in the double-stochastic Poisson model 
(or Cox-model), the hazard rate follows the Cox-Ingersoll-Ross process described in 
the following equation:

( )1 2 3t td dt dWλ θ θ λ θ λ= − +

A simulation of the Cox-Ingersoll-Ross (CIR) process is supplied by the sde package:

> library(sde)

Redefine the time dimensions, maturity, length, and number of time periods:

> Time <- 1; dt <- 1/252; M <- Time / dt

After that, create the CIR process by declaring the X0 initial value, the θ
1
, θ

2
 drift 

parameters (θ
1
/θ

2
 is the long run value, θ

2
 is the speed of adjustment), and the θ

3
 

volatility parameter:

> lambda <- sde.sim(X0 = 0.1, delta = dt,T = Time, N = M,

+     theta = c (0.05, 0.5, 0.2), model = "CIR")

It is easy to produce Poisson processes in R. Let us generate n*(M+1) Poisson 
distributed random variables (n is the number of trajectories), with a lambda  
parameter vector (this simulated vector of θ proves that the process is  
a double-stochastic or Cox process):

> n <- 5

> set.seed(117); val <- rpois(n * (M + 1), lambda)

Store these numbers in a matrix with M+1 rows and n columns, such  
as the following:

> dN <- matrix(val, M + 1, n)

Add the increments of N
t
 (dN) to get the whole Cox process (N):

> N <- apply(dN, 2, cumsum)
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Plot it as we did earlier in the chapter. The resulting graph should look something 
like the following diagram.

> matplot(x = seq(0, Time, dt), y = N[, 1:5], type = 's', xlab = 'Time',

+    ylab = "'Number of defaults' process trajectories",

+    main = 'Trajectories of Cox processes ')
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Correlated defaults – the portfolio 
approach
In this section, we show you how to deal with correlated random variables with 
copulas for the simulation of loss distributions of credit portfolios. The copula 
function is a joint cumulative distribution function of uniform distributed random 
variables. The copula function contains all the information on the dependence 
structure of the components. Any of the continuously distributed random variables 
can be transformed into uniformly distributed variables, which allows for the 
possibility of general modeling; for example, it can be combined with the structural 
approach. Using the copula package, we demonstrate how to simulate two 
uniformly distributed random variables with Gaussian and t-copulas, and how to fit 
in a Gaussian copula parameter from the generated data. (One can apply this method 
for historical datasets also.) This package also serves useful functions in a wide 
range of topics about copulas, such as plotting or fitting copula classes involving 
Archimedean copulas.

At first, declare a Gaussian copula class with an 0.7 correlation after loading the 
copula package as follows:

> library(copula)

> norm.cop <- normalCopula(0.7)

After that, generate 500 realizations of two uniformly distributed random variables 
with the Gaussian copula dependency structure:

> set.seed(117); u1 <- rCopula(500, norm.cop)

For the comparison, define a tcopula class with an 0.7 correlation and 4 degrees  
of freedom:

> t.cop <- tCopula(0.7, df = 4)

Now, generate 500 realizations of pairs of random variables with t-copula 
dependence:

> set.seed(117); u2 <- rCopula(500, t.cop)
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Plot the results into two graphs next to each other. The par command ensures the 
two figures will be placed next to each other, ordered in a row and two columns 
(mfcol).

> par(mfcol = c(1, 2))

> plot(u1, main = 'Scatter graphs of random variable pairs generated by 
Gaussian copula')

> plot(u2, main = 'Scatter graphs of random variable pairs generated by 
t-copula')

Fit the Gaussian copula correlation parameter for u1 data with the maximum 
likelihood (ml) method where the function uses the copula family type of the norm.
cop object we defined before:

> fit.ml <- fitCopula(norm.cop, u1, method = "ml")

When we print the following results, we receive that the estimated correlation  
is around 0.69:

> fit.ml

fitCopula() estimation based on 'maximum likelihood'

and a sample of size 500.

      Estimate Std. Error z value Pr(>|z|)    

rho.1  0.68583    0.01936   35.43   <2e-16 ***

---

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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The maximized loglikelihood is  164.8

Optimization converged

Number of loglikelihood evaluations:

function gradient

      28        3

We remark that the package supports some other methods for estimating correlation.

Migration matrices
Credit rating transition is the migration of a corporate or governmental bond from 
one rating to another. The well-known industrial application is the CreditMetrics 
approach. It provides a risk modeling tool for bond portfolios to estimate the 
Conditional Value-at-Risk (CVaR) and credit spreads of a portfolio due to 
downgrade and upgrading. In this section, we show how to calculate credit spreads 
from a transition matrix.

We have to define the loss given default (lgd), the ratings (in this example: A, B,  
and D) and the one year transition matrix to compute credit spreads:

> library(CreditMetrics)

> lgd <- 0.5

> rc <- c( "A", "B", "D")

> M <- matrix(c(85, 13, 2, 5, 80, 15, 0, 0, 100 ) /100, 3, 3,

+          dimnames = list(rc, rc), byrow = TRUE)

The command cm.cs calculates the credit spreads from the migration matrix:

> cm.cs(M, lgd)

         A          B

0.01005034 0.07796154

According to this example, a debt instrument with the rating "A" has around 1% 
credit spread and debt rated "B" has around 7.8% credit spread, calculated from  
the M migration matrix.
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Getting started with credit scoring in R
R provides powerful statistical tools for credit scoring. We emphasize here some of 
the most common techniques, namely probability default estimation with logit and 
probit regressions and ROC curve analysis. During both behavioral and application 
credit scoring, one can estimate or score the probability of default in the usual way 
that the theory of cross-sectional econometrics suggests.

Logit and probit regressions are generalized linear regression models with binary, 
dependent variables, where the two outcomes can be, for example, either defaulted 
or not. Logit regression uses logistic function; the probit model applies a cumulative 
distribution function of the standard normal distribution for estimating the 
probability of default. Coefficients of independent variables are typically estimated 
by the maximum likelihood method in both cases. Logit and probit regression 
models can be called with the glm command, which is the generalized linear  
model function in R for estimating coefficients. Typical R tools for regression  
analysis suit further examinations well. For example, the anova function is also 
useful in providing a classical analysis of variance.

Credit scoring modelers often employ receiver operating characteristic curves  
to illustrate the performance of their estimated model. The ROC curve shows  
the ratio of the sensitivity (sensitivity: accepted non-defaulted, to all non-defaulted) 
to one minus the specificity (specificity: denied defaulted, to all defaulted).  
The pROC package contains the roc function for producing the ROC curve. The  
well-documented package can be installed in the usual way and the ROC curve  
can be plotted with the plot command.

Summary
In this chapter, we briefly introduced some of the most common methods related to 
credit risk modeling. However, there are several industrial approaches for handling 
default risk. The bases of the advanced methods are usually some of the structural 
and intensity-based approaches. Copula models are still popular for modeling the 
risk of credit portfolios, especially in the pricing of structured credit derivatives. 
There are comprehensive and strong R packages for modeling copulas. The first step 
to model downgrade risk is knowledge about the principles of managing migration 
matrices and the CreditMetrics approach. Finally, we briefly outlined the possibilities 
of credit scoring in R.
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Extreme Value Theory
The risk of extreme losses is at the heart of many risk management problems both 
in insurance and finance. An extreme market move might represent a significant 
downside risk to the security portfolio of an investor. Reserves against future 
credit losses need to be sized to cover extreme loss scenarios in a loan portfolio. 
The required level of capital for a bank should be high enough to absorb extreme 
operational losses. Insurance companies need to be prepared for losses arising from 
natural or man-made catastrophes, even of a magnitude not experienced before.

Extreme Value Theory (EVT) is concerned with the statistical analysis of extreme 
events. The methodology provides distributions that are consistent with extreme 
observations and, at the same time, have parametric forms that are supported by 
theory. EVT's theoretical considerations compensate the unreliability of traditional 
estimates (caused by sparse data on extremes). EVT allows the quantification of the 
statistics of extreme events, possibly even beyond the most extreme observation so far.

The types of models within EVT that find the most applications in finance and 
insurance are the models of threshold exceedances. These characterize the 
distribution of all large observations that exceed some high level, thus providing  
an estimate of the tail of the distribution. Since many risk management problems 
can be formulated in terms of the tails of distributions, these models may be directly 
applied to such problems.

The objective of this chapter is to present possible uses of Extreme Value Theory in 
insurance and finance through the example of a real-life risk management application. 
First, we provide a brief overview of the theory of threshold exceedance models in 
EVT. We then work through a detailed example of fitting a model to the tails of  
the distribution of fire losses. We use the fitted model to calculate high quantiles  
(Value at Risk) and conditional expectations (Expected Shortfall) for the fire losses.
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Theoretical overview
Let the random variable X represent the random loss that we would like to model, 
with F(x) = P(X ≤ x) as its distribution function. For a given threshold u, the excess 
loss over the threshold Y = X – u has the following distribution function:

( ) ( )( ) ( | )
1 ( )u

F y u F uF y P X u y X u
F u

+ −
= − ≤ > =

−

For a large class of underlying loss distributions, the Fu(y) distribution of excess losses 
over a high threshold u converges to a Generalized Pareto distribution (GPD) as the 
threshold rises toward the right endpoint of the loss distribution. This follows from  
an important limit theorem in EVT. For details, the reader is referred to McNeil, Frey, 
and Embrechts (2005). The cumulative distribution function of GPD is the following:

( ) ( )
( )

1/

,
1 1 / , 0
1 exp / , 0

xxy xG y
y xξ β
β
β

 − + ≠
=  

− − =  

Here ξ is generally referred to as the shape parameter and β as the scale parameter.

Though strictly speaking, the GPD is only the limiting distribution for excess losses 
over a high threshold, however, it serves as the natural model of the excess loss 
distribution even for finite thresholds. In other words, for a high enough threshold, 
the excess distribution can already be considered close enough to GPD, so that the 
latter can be used as a model for the excess distribution. Essentially, we assume that

( ) ( ),uF y G yξ β=

for some ξ and β.

Once a GPD is fitted to excess losses, it may be used among others to calculate high 
quantiles (Value at Risk) and conditional expectations for the original loss distribution. 
Specifically, the loss distribution function is modeled over the threshold u as

( ) ( ) ( ) ( ),1F x F u G x u F uξ β= − ⋅ − +  

with F(u) typically estimated empirically. This represents a parametric model for  
the tail of the original loss distribution above the threshold.
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Application – modeling insurance claims
In the remainder of this chapter, we work through an example of using EVT in a 
real-life risk management application. We apply the preceding methodology to fire 
insurance claims, with the aims of fitting a distribution to the tails and providing 
quantile estimates and conditional expectations to characterize the probability and 
magnitude of large fire losses. We note that the exact same steps may be applied to 
credit losses or operational losses as well. For market risk management problems, 
where the underlying data is generally the return of a security, we would remove  
the gains from the data set and focus on the losses only; otherwise, the modeling 
steps are again identical.

Multiple packages are available in R for extreme value analysis. In this chapter we 
present the evir package in the following command. A good overview of the various 
R packages for EVT is provided in Gilleland, Ribatet, and Stephenson (2013).

As done previously, we need to install and load the evir package before we use it:

> install.packages("evir")

> library(evir)

The data we use in this example consists of large industrial fire insurance claims 
from Denmark. The data set, covering the years from 1980 to 1990, contains all fire 
losses exceeding one million Danish krone. This is a popular data set often used in 
EVT for demonstration purposes. The data is available in the evir package; we can 
load it into our workspace using the following command:

> data(danish)

The resulting numeric vector contains 2,167 observations as well as the corresponding 
observation times. Type help(danish) for further details on the data set.

Exploratory data analysis
To get some impression of the data, we calculate summary statistics and also plot  
the histogram of claims using the following commands:

> summary(danish)

   Min.  1st Qu.  Median   Mean   3rd Qu.   Max.

  1.000   1.321   1.778   3.385   2.967    263.300

> hist(danish, breaks = 200, xlim = c(0,20))
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The following figure shows the histogram of Danish insurance claims.

The distribution of claims is strongly skewed with a long-right tail, suggesting 
that small fire losses occur quite frequently; however, very large losses may occur 
occasionally as well (the largest claim in the data set is 263 million krone). These 
large claims are not even visible on the following histogram as we have truncated 
the plot at 20 million krone. As shown by the calculation in the following command 
lines, less than 2% of the losses are above this threshold, yet these represent 22% of 
the total loss amount:

> sum(danish>20) / length(danish)

[1] 0.01661283

> sum(danish[danish>20]) / sum(danish)

[1] 0.2190771

It is the probability of such extremely large losses occurring (as well as their expected 
magnitude) that we are interested in, in this example. Estimating such probabilities 
using relative frequencies of large losses in the sample is unreliable due to the small 
number of such losses.
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Tail behavior of claims
A perhaps more useful visualization of the data can be obtained using a logarithmic 
scale for the x axis (or even both axes). We perform this by plotting the empirical 
complementary cumulative distribution function (ccdf, that is, the empirical 
probability of the claims exceeding any given threshold, sometimes also referred  
to as the survival function) using the emplot function of the evir package. The 
following first command creates the plot using logarithmic scales on the x axis only, 
whereas the second command results in a plot with logarithmic scales on both axes:

> emplot(danish)

> emplot(danish, alog = "xy")

The following figure shows the second plot:
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Interestingly, the empirical ccdf is nearly linear when plotted using logarithmic 
scales on both axes. This reveals the fat-tailed nature of the data and the possible 
Pareto-type distribution of the claims (also referred to as power law, as the ccdf  
can be written as a power of the thresholds).

Another useful tool to examine whether the data comes from a particular distribution 
is the quantile-quantile plot (Q-Q plot). This plots quantiles of the data against 
quantiles of a hypothesized distribution. If the distribution assumption is correct,  
the resulting plot will be linear. Deviations from a linear plot reveal how the 
distribution of the data differs from the hypothesized distribution, for example,  
a concave plot indicates that the empirical distribution has a fatter tail.

Q-Q plots can be created using the qplot function of the evir package.

For loss data, the natural hypothesized distribution is the exponential distribution; 
consequently, the qplot function compares the data to the exponential distribution 
by default. The function, however, allows comparisons to be made to the more 
general GPD distribution by specifying its ξ shape parameter via the argument xi. 
Additionally, the data can be right truncated at some value via the trim argument 
to avoid the largest observations distorting the plot. The following command creates 
a Q-Q plot of the Danish fire loss data against the exponential distribution, with the 
loss data truncated at 100:

> qplot(danish, trim = 100)

The resulting plot also confirms that the empirical distribution has a much fatter tail 
than the exponential distribution and so the latter is not a good model for the data.

Determining the threshold
Now that we have established that the data is fat-tailed and follows a power law, 
we turn to fitting a GPD distribution to the threshold exceedances. However, before 
performing that, we need to determine an appropriate threshold. Though determining 
the threshold is at the discretion of the modeler, there exist useful tools that help  
to confirm that the convergence to GPD is already sufficient for a given threshold.

Perhaps the most useful tool for this is the mean excess function, defined as the 
average excess of the random variable X over the threshold u, defined as a function 
of the threshold:

( ) [ ]|e u E X u X u= − >
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It can be easily shown that the mean excess function of the GPD is a linear function 
of the threshold u, with a coefficient proportional to the ξ shape parameter of the 
distribution (accordingly, in general, a positive gradient of the mean excess function 
indicates fat tails, whereas a negative gradient indicates thin tails). Therefore,  
a reasonable way to determine the threshold is to find the value over which  
the sample mean excess function is approximately linear.

The meplot function of the evir package plots sample mean excesses over increasing 
thresholds. The omit argument allows you to specify the number of upper plotting 
points to be omitted from the plot (again, so that these points do not distort the plot).

> meplot(danish, omit = 4)

The following figure shows the resulting sample mean excess plot:

The resulting plot looks fairly linear across the whole spectrum of losses; 
consequently, it might even be possible to fit a single GPD distribution to the entire 
data set. However, we may observe a small kink just below 10, possibly indicating 
that smaller losses follow a somewhat different law. A fairly linear region can 
be observed between 10 and 20; above 20 the data becomes sparse. Therefore, a 
threshold of 10 can be considered a reasonable choice that is consistent with the 
sample mean excess function. This leaves us with 109 losses exceeding this threshold 
(5% of the original sample).
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Fitting a GPD distribution to the tails
Now we have everything ready to fit a GPD distribution to the tails of the fire loss 
data. We can perform the fitting using the gpd function, specifying the threshold 
determined in the preceding section, using the following command:

> gpdfit <- gpd(danish, threshold = 10)

The gpd function uses the maximum likelihood (ML) method by default to estimate 
the parameters of the GPD distribution. The function returns an object of the gpd 
class, containing the estimated parameters (together with their standard errors 
and covariances) as well as the data exceeding the specified threshold. The zero 
value of the converged member indicates convergence to the maximum in case ML 
estimation was used. The members par.ests and par.ses contain the estimated ξ 
and β parameters and their standard errors, respectively.

> gpdfit$converged

[1] 0

> gpdfit$par.ests

       xi      beta

0.4968062 6.9745523

> gpdfit$par.ses

       xi      beta

0.1362093 1.1131016

Our ML estimation thus resulted in the estimated parameters of ξ = 0.50 and β = 6.97, 
with standard errors of 0.14 and 1.11, respectively.

To verify our results, we may use the plot(gpdfit) command that provides  
a menu for plotting the empirical distribution of excesses and the tail of the original 
distribution (along with the fitted GPD), as well as a scatterplot and a Q-Q plot of the 
residuals from the fit. The following figure shows the excess distribution and fitted 
GPD distribution (plot 1 from the menu)—the GPD distribution clearly provides  
a very good fit to the data:
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Quantile estimation using the fitted GPD 
model
Now that we have fitted a GPD model to the data, we can use it to estimate 
high quantiles or Value at Risk (VaR). We can do this using the gpd.q function, 
which however needs a list object returned from plot.gpd or the tailplot 
function (which corresponds to selection 2 of the plot.gpd menu). We use the 
tailplot function to directly create a plot of the tail of the original Danish fire 
loss distribution. We then pass in the returned object to gpd.q, along with the pp 
argument specifying the quantile to be estimated.

> tp <- tailplot(gpdfit)

> gpd.q(tp, pp = 0.999, ci.p = 0.95)

 Lower CI  Estimate  Upper CI

 64.66184  94.28956 188.91752
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The estimated 99.9% quantile is 94.29 million Danish krone. As there are only three 
observations exceeding this level, had we estimated this quantile from the empirical 
distribution, our estimate would have been quite prone to error. As a comparison, 
the standard empirically estimated quantile, obtained using the quantile function, 
results in an estimated 99.9% quantile of 144.66 million Danish krone:

> quantile(danish, probs = 0.999, type = 1)

   99.9%

144.6576

Essentially,  the standard quantile estimation is driven by the single data point 
144.6576 (corresponding to the third largest loss in the data set). EVT fills the data 
gap with a parametric form for the tail to provide a more reliable estimate. This 
is especially useful in operational risk applications where regulations require the 
calculation of a very high quantile (99.9%).

In addition to calculating the estimated quantile and its confidence intervals  
(whose probability is specified by the ci.p argument), the gpd.q function also  
adds an overlay to the tail distribution plot produced by tailplot, displaying 
the point estimate for the quantile (vertical dashed line), and the profile likelihood 
curve of the estimator (dashed curve). The boundaries of the confidence interval  
for the estimation are given by the intersections of the dashed curve and  
the horizontal dashed line, as shown in the following figure:
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Calculation of expected loss using the fitted 
GPD model
The fitted GPD model might also be used to estimate the expected size of insurance 
loss, given that a certain level of loss is exceeded. Alternatively, we may want to 
estimate the expected loss given that a particular quantile of the loss (for example, 
the 99% quantile) is exceeded. In risk management, the latter measure is called 
Expected Shortfall (ES). The following commands calculate the 99% Expected 
Shortfall using the gpd.sfall function:

> tp <- tailplot(gpdfit)

> gpd.q(tp, pp = 0.99)

Lower CI Estimate Upper CI

23.36194 27.28488 33.16277

> gpd.sfall(tp, 0.99)

 Lower CI  Estimate  Upper CI

 41.21246  58.21091 154.88988

The estimated 99% quantile is 27.28 million Danish krone and the estimated 99% 
Expected Shortfall is 58.21 million Danish krone. In other words, assuming that the 
99% quantile level of 27.28 million is exceeded, the expected loss is 58.21 million. The 
following graph shows the estimate of 99% Expected Shortfall for Danish fire loss data.

The resulting graph displays both the 99% quantile or VaR (first vertical dashed  
line and corresponding profile likelihood curve) and the 99% Expected Shortfall 
(second vertical dashed line and corresponding profile likelihood curve).
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Summary
In this chapter, we presented a case study of how Extreme Value Theory methods 
can be used in R in a real-life risk management application. After briefly covering 
the theory of threshold exceedance models in EVT, we worked through a detailed 
example of fitting a model to the tails of the distribution of fire insurance claims. 
We used the fitted model to calculate high quantiles (Value at Risk) and conditional 
expectations (Expected Shortfall) for the fire losses. The presented methods are 
readily extendable to market, credit, or operational risk losses as well.
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Financial Networks
We have seen in the previous chapter how extreme events coming from asymmetric 
and fat-tailed distributions can be modeled and how the risk associated with extreme 
events can be measured and managed.

In some cases we have access to financial data that enables us to construct complex 
networks. In financial networks, it is quite usual that the distribution of some 
attributes (degree, quantity, and so on) is highly asymmetric and fat-tailed too.

By nature, available financial networks are usually not complete; they do not contain 
either all possible players, or all possible connections, or all relevant attributes. But 
even in their limited state, they constitute an extremely rich and informative data set 
which can help us to get insight into the detailed microstructure of the market under 
investigation.

This chapter gives an overview of how financial networks can be represented, 
simulated, visualized, and analyzed in R. We will focus on two important  
practical problems:

•	 How topology changes of the network can be detected
•	 How systemically important players can be identified with the help of 

centrality measures
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Representation, simulation, and 
visualization of financial networks
Networks can be represented by a list of pairs, by an adjacency matrix, or by graphs. 
Graphs consist of vertices and edges (nodes). In R, vertices are numbered and may 
have several attributes. Between two vertices there can exist an edge (directed or 
undirected, weighted or non-weighted), and the edge may have other attributes 
as well. In most financial networks, vertices stand for market players, while edges 
describe different sorts of financial linkages between them.

Using the built-in R tools and some function from the igraph package, it is easy to 
create/simulate artificial networks. The following table (Table 1) summarizes some 
important network types and their basic properties:

Network Clustering Average path length Degree distribution

Regular (for example, 
ring, full)

High High Equal or fixed in-out 
degrees in each node

Pure random (for 
example, Erdős-Rényi)

Low Low Exponential, Gaussian

Scale free Variable Variable Power law/fat-tail

Small world (for 
example, Barabási, 
Watz-Strogatz)

High Low Power law/fat-tail

Table 1: Properties of networks

The source of this table is Markose at al. 2009.

The most important network properties are the following:

•	 Density measures the extent of links between nodes relative to all possible 
links in a complete graph.

•	 Clustering (called transitivity in R) measures how interconnected each 
agent’s neighbors are and is considered to be the hallmark of social networks. 
The clustering coefficient for the entire network is the average of all 
coefficients for its nodes.

•	 Path length is the distance between two agents and is given by the number of 
edges that separate them; the average of the shortest paths characterizes the 
whole network. The longest shortest path in the network is called diameter.

•	 Degree is the number of connections the node has to other nodes.  
Degree distribution is the probability distribution of these degrees  
over the whole network.
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Non-random regular networks are highly ordered where each node connects to all of  
its nearest neighbors. A full graph can be generated with the igraph package’s 
graph.full, and partial networks can be generated with a similar function resulting 
in tree, lattices, ring, and so on.

In contrast to regular networks, in a pure random Erdős-Rényi network, linkages are 
generated by choosing two nodes uniformly at random. As we are dealing with 
random numbers here, it is worth setting a custom seed and the state of the random 
number generator, so that it would return the same random number in all R sessions.

> set.seed(7)

When simulating an Erdős-Rényi graph, we have to set at least two parameters in 
advance: the number of the nodes (for example, 100) and the probability for drawing 
an edge between two arbitrary vertices (for example, 0.1):

> e <- erdos.renyi.game(100, 0.1)

> plot(e)

The following figure depicts a pure random network (Erdős-Rényi):

We can also calculate the main characteristics of the preceding network, which are 
density, clustering (transitivity), and average path length, from Table 1:

> graph.density(e)
[1] 0.05434343
> transitivity(e)
[1] 0.05522828
> average.path.length(e)
[1] 2.923636
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Graph density and transitivity are around 0.1, the initially-set edge probability and 
the difference is only due to the noise inherent in the small sample.

In a scale-free network, degree distribution follows a power law; therefore vertices 
differ enormously in terms of their degree. Small-world networks constitute a special 
subset of scale-free networks where vertices tend to form cliques, resulting in 
the overabundance of weakly-linked dense hubs. Not surprisingly, clustering 
coefficient is remarkably high and average path is short in small-world networks. 
Preferential attachment and fitness have been proposed as mechanisms to explain 
power law degree distributions and clustering; see Barabási-Albert (1999) and 
Bianconi-Barabási (2001). Social/financial networks are often modeled as small 
world. There are several ways of creating small world networks in R, for example, 
watts.strogatz.game or barabasi.game. Let us use the first one here:

> set.seed(592)

> w <- watts.strogatz.game(1, 100, 5, 0.05)

> plot(w)

The following figure depicts a random scale-free network (Watts-Strogatz):
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Let us compare our Watts-Strogatz small-world network to the previous pure 
random Erdős-Rényi graph in terms of the main network measures:

> graph.density(w)
[1] 0.1010101             # approximately the same
> transitivity(w)
[1] 0.4626506             # much higher
> average.path.length(w)
[1] 2.625455              # longer

In the preceding R chunk, we have stored the result of the Watts-Strogatz game in  
a variable called b that we plotted afterwards. Extracting the list of edges can be done 
easily with the get.edgelist function that would return a matrix of two columns. 
Here we show only the first five rows of the returned list:

> we <- get.edgelist(w)> head(we, 5)
     [,1] [,2]
[1,]    1    2
[2,]    2   77
[3,]    3    4
[4,]    4    5
[5,]    5    6

Other network manipulations are also possible in R. For example, we may wish to 
see the adjacency matrix of the graph with the help of the get.adjacency function. 
Or, it can be useful to randomize our network by permuting vertex IDs, which can 
be done with permute.vertices. It can happen that we need to merge several 
vertices into one along with some vertex attributes by using contract.vertices. 
We can also create the union and intersection of several networks with some 
internal R functions named accordingly.
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Analysis of networks’ structure and 
detection of topology changes
Now, let us suppose we have access to a real-world database of an interbank market 
(randomized data for illustrative purpose), where banks lend to each other and lending 
banks report on their positions at the end of each day in the period of 2007-2010.  
The database consists of 50 banks and the maturity of the loans is one day. In order  
to manipulate the real-world networks in R, it is advisable to convert our data into 
a CSV file and save it into our working directory. The following table (Table 2) shows 
the top lines of our CSV file:

Bank Partner Amount Interest Year Month Day

1 21 5 7,9 2007 1 3

1 42 3 7,9 2007 1 3

10 11 0,35 7,8 2007 1 3

18 24 2 8 2007 1 3

2 11 1,3 7,8 2007 1 3

21 11 0,8 7,8 2007 1 3

21 2 5 7,75 2007 1 3

3 24 4 7,95 2007 1 3

Table 2: Database of an interbank market

Source: The authors

Each row contains a transaction: the reporting bank (the lender), its partner bank  
(the borrower), the loan amount, the interest rate, and the date of the transaction.  
We can read these details in our data from the CSV file:

> data <- read.csv2(‘networktable.csv’)

Now we have a table of seven columns and 21,314 rows:

> str(data)
‘data.frame’:   21314 obs. of  7 variables:
 $ Bank    : int  1 1 10 18 2 21 21 3 3 30 ...
 $ Partner : int  21 42 11 24 11 11 2 24 42 12 ...
 $ Amount  : num  5 3 0.35 2 1.3 0.8 5 4 1.8 2 ...
 $ Interest: num  7.9 7.9 7.8 8 7.8 7.8 7.75 7.95 7.9 7.9 ...
 $ Year    : int  2007 2007 2007 2007 2007 2007 2007 2007 2007 ...
 $ Month   : int  1 1 1 1 1 1 1 1 1 1 ...
 $ Day     : int  3 3 3 3 3 3 3 3 3 3 ...

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 9

[ 131 ]

The size of the balance sheet of each bank is also available and is stored in a separate 
CSV file. The first column of the CSV file is assumed to contain symbolic vertex 
names, other columns will be added as additional vertex attributes.

> size <- read.csv2(‘vertices.csv’)

We can create graph objects using our data frames in the following way:

> bignetwork <- graph.data.frame(data, vertices = size)

This function creates an igraph object. The data frames must contain the edge list in 
the first two columns. Additional columns are considered as edge attributes.

In the second step we can ask for the network’s basic properties.

> is.connected(bignetwork)

[1] TRUE

The network is fully connected, meaning that during 2007-2010 all the banks traded 
with all the other banks at least once. We can check whether the network has 
multiple edges:

> table(is.multiple(bignetwork))

FALSE  TRUE 

 1049 20265 

R found many edges that are multiple, meaning that banks traded several times 
with the same partners. Let us also check whether the network has loops, that is, 
transactions where the reporting bank and the partner bank was the same:

> str(is.loop(bignetwork))

logi [1:21314] FALSE FALSE FALSE FALSE FALSE FALSE ...

Here we get a list of all the edges. It seems that there are some loops which must be 
data errors. If we wish to leave out all the loops and summarize the multiple edges, 
we can do it in one step by simplifying the network:

> snetwork <- simplify(bignetwork, edge.attr.comb = “sum”)

Having our graph simplified, we can plot it with relatively small arrows not to 
overcrowd the resulting figure:

> plot(snetwork, edge.arrow.size = 0.4)
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The following figure depicts our real-world network:

In the third step, we can apply complex analytical tools built in R to explore the inner 
structure of the network.

Communities (densely connected subgraphs) can be detected, for example, by the 
walktrap.community function, which finds densely connected subgraphs. The idea 
is that short random walks tend to stay in the same community.

Modularity is the share of the edges belonging to the given groups minus the 
expected share, if edges were distributed at purely random. Modularity ranges 
between [−1/2,1). If it is positive, it is the sign of clustering.

> communities

Number of communities (best split): 2

Modularity (best split): 0.02499471

Membership vector:

 1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

 1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1

24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46

 1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  2  1  2  1  2  2

47 48 49 50

 2  2  2  2
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Besides the properties presented in Table 1 (density, transitivity, average path, and 
degree distribution), many other R functions can also be applied to characterize our 
network, for example, graph.coreness, girth, cliques.number, reciprocity, and 
so on. Further details can be found in the official igraph manual available at:

http://igraph.sourceforge.net/doc/html/

The market structures evolve in time. They show high stability in peacetime, 
meaning that regardless of numerous alterations, their fundamental topology 
remains the same, for example, see Lublóy (2006). But fundamental changes may 
occur in times of crisis: markets dry out and refill, the number and the market share 
of active players change dramatically, and the role of the players may also change 
(for example, lenders become borrowers and vice versa), see for example, Soramäki et 
al. (2006) and Bech-Atalay (2008).

The default Lehman Brothers was announced on September 15, 2008 which had  
a deep impact on financial markets all around the world. Hence, it seems reasonable 
to compare network topologies before and after this event. In order to detect 
the fundamental changes in the topology, let us first create a series of monthly 
aggregated networks, then calculate network measures for each month and plot 
them as time series.

To match only a part of the data, the subset function can be useful. For example,  
to filter September of 2008 one may run:

> monthlynetwork <- subset(data, (Year == 2008) & (Month == 9))

In the next few examples we will iteratively subset a month of the original dataset 
and will also apply some functions on the subsets. This can be done with a basic 
loop, with different apply functions (especially ddply from the plyr package), or  
by aggregating the dataset by given dimensions. We start from aggregate measures 
and gradually zoom into details. Hence, let us see first, how aggregate quantity  
(sum of amounts in a month) changed over time:

> mAmount <- with(data, 
+   aggregate(Amount, by = list(Month = Month, Year = Year), 
+   FUN = sum))

Here we have computed the sum of Amount in each Year and Month inside of data 
with the help of the aggregate command. Let us also plot the results as a monthly 
time series, using the following command:

> plot(ts(mAmount$x, start = c(2007, 1), frequency = 12), 
+   ylab = ‘Amount’)
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The following figure depicts the evolution of the monthly amount over time:

On the above figure we can observe an important structural change just after the 
Lehman-fall. If we have a closer look at the network, it turns out that the inner 
structure of the network has also dramatically changed after the burst of the crisis. 
In order to demonstrate these changes, we can calculate and plot network measures 
month to month as time series. We calculate the case of graph density with a nested 
loop, computing the values for each month.

> ds <- sapply(2007:2010, function(year) { 
+    sapply(1:12, function(month) { 
+        mdata <- subset(data, (Year == year) & (Month == month)) 
+        graph.density(graph.data.frame(mdata)) 
+    }) 
+})

> plot(ts(as.vector(ds), start = c(2007, 1), frequency=12))

> abline(v = 2008 + 259/366, col = ‘red’)
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The following figure depicts the evolution of graph density over time:

We can see that after the Lehman-fall network density suddenly dropped, reflecting 
that transactions concentrated on fewer banks, most of the other network measures 
showed significant structural changes as well.

Contribution to systemic risk – 
identification of SIFIs
A complex system is not simply the sum of its elements. It is possible that all entities 
are safe in themselves, but the system as a whole is still vulnerable. Systemic risk  
is the risk of the entire system collapsing due to one or several shocks. If we wish to 
identify the systemically important financial institutions (SIFIs) as it was proposed 
by BCBS (2011), we have to consider five factors contributing to systemic risk: size, 
interconnectedness, lack of substitutes, cross-jurisdictional activity, and complexity 
of the activities. When measuring interconnectedness, we can rely on network data 
and can apply several methods, for example, centrality measures, stress test, and 
core-periphery models.
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Now, we illustrate the first method based on an index of some centrality measures, 
as described in Komárková et al.(2012) and von Peter (2007). Banks with the highest 
index-value can be considered as the most central ones, thus with the most SIFIs. 
Simpler centrality measures are based on fairly narrow information set containing 
only connections and directions, while edge weights and other attributes are 
completely set aside. For example, simpler centrality measures are as follows:

•	 Degree (in/out/all): It shows the total number of incoming, outcoming,  
and all transactions where the bank was involved in.

•	 Betweenness (directed/undirected): It shows the frequency with which 
a bank lies on the shortest path. When determining the shortest path, the 
network can be treated as directed or undirected. In the first case the shortest 
path is longer, therefore frequency is higher.

•	 Closeness (in/out/all): It is the average of the reciprocal of the length of all 
shortest paths to other banks. This measure helps to identify banks with the 
broadest reach to other banks, including the smallest ones.

•	 Eigenvector (in/out/all): It is the measure of how well a given bank  
is connected to other well-connected banks.

Let us take the period of 2007 to 2010 as a whole and concentrate on all the 
connections in a directed graph using the following command:

> g <- graph.data.frame(data)

We calculate the four preceding centrality measures and aggregate them into an index.

> degree <- degree(g, normalized = TRUE)

> between <- betweenness(g, normalized = TRUE)

> closeness <- closeness(g, normalized = TRUE)

> eigenv <- evcent(g, directed = TRUE)$vector

When computing the index, we have to normalize the difference of the centrality 
measure of a given bank to the mean of the centrality measure over the whole 
population. For this end, we can construct a function if we do not want to use  
the built-in scale with various options:

> norm <- function(x) x / mean(x)
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If centrality measures are equally weighted, we will use the following formula:

> index <- (norm(degree) + norm(between) + 
+  norm(closeness) + norm(eigenv)) / 4

> index

         1          8         15          2         18          3

0.91643667 0.49431153 1.06216769 1.35739158 4.56473014 1.44833480

        26         32         35         36         37          4

1.36048296 0.73206790 1.13569863 0.40296085 0.54702230 3.94819802

Now, we plot the distribution of the index and select the banks with the highest index 
value, as shown in the following figure, generated using the following command:

> hist(index)

Once we have the index distribution, we have to decide which banks we consider 
important (for example, banks with index value higher than 2.5: 18, 12, 20, 17, 9, 
and 10). Of course, the index could be completed with other centrality measures, 
that is, more advanced ones relying on broader information set; see for example, 
intermediacy in von Peter (2007).
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Summary
In this chapter, we focused on financial networks and used the igraph package of R, 
which provided effective tools for network simulation, manipulation, visualization, 
and analysis. We learned how to read in network data and how to explore the 
network's basic properties. We discovered that our illustrative market data exhibited 
significant structural changes due to the crisis. In the final part we showed a simple 
method of finding systematically important players within the network.
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