Backtrader量化平台教程(一):backtrader的整体框架
這一篇寫的很好
重點是範例檔會動,之前我抓過好幾個程式都不能用,東缺西缺的。
程式碼如下
- from __future__ import (absolute_import, division, print_function,
- unicode_literals)
-
- import datetime # For datetime objects
- import os.path # To manage paths
- import sys # To find out the script name (in argv[0])
- import pandas as pd
- #from WindPy import w
- # Import the backtrader platform
- import backtrader as bt
-
-
- # Create a Stratey
- class TestStrategy(bt.Strategy):
-
- def log(self, txt, dt=None):
- ''' Logging function fot this strategy'''
- dt = dt or self.datas[0].datetime.date(0)
- print('%s, %s' % (dt.isoformat(), txt))
-
- def __init__(self):
- # Keep a reference to the "close" line in the data[0] dataseries
- self.dataclose = self.datas[0].close
- # To keep track of pending orders
- self.order = None
-
- def notify(self, order):
- if order.status in [order.Submitted, order.Accepted]:
- # Buy/Sell order submitted/accepted to/by broker - Nothing to do
- return
-
- # Check if an order has been completed
- # Attention: broker could reject order if not enougth cash
- if order.status in [order.Completed, order.Canceled, order.Margin]:
- if order.isbuy():
- self.log('BUY EXECUTED, %.2f' % order.executed.price)
- elif order.issell():
- self.log('SELL EXECUTED, %.2f' % order.executed.price)
-
- self.bar_executed = len(self)
-
- # Write down: no pending order
- self.order = None
-
- def next(self):
- # Simply log the closing price of the series from the reference
- self.log('Close, %.2f' % self.dataclose[0])
-
- # Check if an order is pending ... if yes, we cannot send a 2nd one
- if self.order:
- return
-
- # Check if we are in the market
- if not self.position:
-
- # Not yet ... we MIGHT BUY if ...
- if self.dataclose[0] < self.dataclose[-1]:
- # current close less than previous close
-
- if self.dataclose[-1] < self.dataclose[-2]:
- # previous close less than the previous close
-
- # BUY, BUY, BUY!!! (with default parameters)
- self.log('BUY CREATE, %.2f' % self.dataclose[0])
-
- # Keep track of the created order to avoid a 2nd order
- self.order = self.buy()
-
- else:
-
- # Already in the market ... we might sell
- if len(self) >= (self.bar_executed + 5):
- # SELL, SELL, SELL!!! (with all possible default parameters)
- self.log('SELL CREATE, %.2f' % self.dataclose[0])
-
- # Keep track of the created order to avoid a 2nd order
- self.order = self.sell()
-
-
- if __name__ == '__main__':
- # Create a cerebro entity
- cerebro = bt.Cerebro()
-
- # Add a strategy
- cerebro.addstrategy(TestStrategy)
-
- # Create a Data Feed
- # 本地数据,笔者用Wind获取的东风汽车数据以csv形式存储在本地。
- # parase_dates = True是为了读取csv为dataframe的时候能够自动识别datetime格式的字符串,big作为index
- # 注意,这里最后的pandas要符合backtrader的要求的格式
- dataframe = pd.read_csv('dfqc.csv', index_col=0, parse_dates=True)
- dataframe['openinterest'] = 0
- data = bt.feeds.PandasData(dataname=dataframe,
- fromdate = datetime.datetime(2015, 1, 1),
- todate = datetime.datetime(2016, 12, 31)
- )
- # Add the Data Feed to Cerebro
- cerebro.adddata(data)
-
- # Set our desired cash start
- cerebro.broker.setcash(100000.0)
-
- # Print out the starting conditions
- print('Starting Portfolio Value: %.2f' % cerebro.broker.getvalue())
-
- # Run over everything
- cerebro.run()
-
- # Print out the final result
- print('Final Portfolio Value: %.2f' % cerebro.broker.getvalue())
- # Plot the result
- cerebro.plot()
複製代碼
裡面的範例在下面這裡
dfqc.7z
(9.39 KB, 下載次數: 69)
|